




New Mexico Bureau of Geology and Mineral Resources

March 2022

C L I M A T E  C H A N G E  I N  N E W  M E X I C O 
O V E R  T H E  N E X T  5 0  Y E A R S :  
I M P A C T S  O N  W A T E R  R E S O U R C E S

Editors and Contributing Authors  
Nelia W. Dunbar1, David S. Gutzler2, Kristin S. Pearthree1, Fred M. Phillips3

Contributing Authors
Craig D. Allen4, David DuBois5, J. Phillip King6, Leslie D. McFadden2,  
Bruce M. Thomson7, Anne C. Tillery8

1. New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM 87801
2. Earth and Planetary Sciences Department, University of New Mexico, Albuquerque, NM 87131
3. Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801
4. Geography and Environmental Studies, University of New Mexico, Albuquerque, NM 87131
5. New Mexico Climate Center, Department of Plant & Environmental Sciences, New Mexico State University, Las Cruces, NM 88003
6. Civil Engineering Department, New Mexico State University, Las Cruces, NM 88003
7. Department of Civil, Construction and Environmental Engineering, University of New Mexico, Albuquerque, NM 87131
8.  U.S. Geological Survey New Mexico Water Science Center, Albuquerque, NM 87113



Established by legislation in 1927, the New Mexico Bureau of Geology and Mineral 
Resources is a research and service division of the New Mexico Institute of Mining and 
Technology (New Mexico Tech). The Bureau of Geology is a non-regulatory agency that 
serves as the geological survey for the State of New Mexico. Through our offices, website, 
and publications, our staff serves the diverse population of our state by conducting 
research; distributing accurate information; creating accurate, up-to-date maps; providing 
timely information on potential geologic hazards; acting as a repository for cores, well 
cuttings and a wide variety of geologic data; providing public education and outreach 
through teaching and advising, our world-class Mineral Museum, and teacher/student 
training programs; and serving on geoscience-focused boards and commissions within the 
state. There is something at the Bureau for everyone who has ever wondered about the 
exceptional geology of New Mexico.

The New Mexico Interstate Stream Commission (NMISC) is a sister agency to, and 
administratively attached to, the New Mexico Office of the State Engineer. NMISC 
activities are overseen by eight appointed Commissioners in addition to the State 
Engineer, who serves as the Commission’s Secretary. The NMISC oversees New Mexico’s 
obligations and entitlements under eight interstate stream compacts to which 
New Mexico is a party. To ensure compact compliance, NMISC staff analyze, review, 
and implement projects in New Mexico and analyze streamflow, reservoir, and other 
data on stream systems. The NMISC is authorized by statute to investigate, develop, 
conserve and protect the water supplies of the state. In addition, the NMISC supports 
and conducts regional and state water planning efforts, implements Indian Water Rights 
Settlements, manages the State’s Strategic Water Reserve and supports compliance 
with federal environmental regulations such as the Endangered Species Act.  Further, 
Governor Michelle Lujan Grisham directed the NMISC to develop the New Mexico 
50-Year Water Plan.    

This report represents a collaboration between two state agencies: the New Mexico 
Bureau of Geology and Mineral Resources and the New Mexico Interstate Stream 
Commission. The work was carried out by the Bureau at the request of the New Mexico 
Interstate Stream Commission in support of development of New Mexico’s 50-Year 
Water Plan. The purpose of the report was to provide a solid and scientifically based 
foundation about climate change in New Mexico over the next five decades upon which 
to build the 50-Year Water Plan.

The Bureau appreciates the New Mexico Interstate Stream Commission’s vision in 
supporting the development of this project. The Bureau also deeply appreciates the 
expertise and commitment of the eight experienced scientists who developed the core 
chapters of this consensus study. We hope this report will be used by many in and around 
New Mexico for many years to come.
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Climate is a fundamental driver of ongoing and future vegetation changes in New Mexico. Future 

changes in vegetation will affect the distribution and abundance of water resources in New Mexico. Major shifts 

in climate and vegetation across New Mexico’s landscapes have occurred in the past, but the scale and rate of 

recent and projected climate change is probably unprecedented during the past 11,000 years. Recent warming, 

along with frequent and persistent droughts, have amplified the severity of vegetation disturbance processes (fire, 

physiological drought stress, insect outbreaks), driving substantial changes in New Mexico vegetation since the 

year 2000. Ongoing and projected vegetation changes include growth declines, reduced canopy and ground cover, 

massive tree mortality episodes, and species changes in dominant vegetation—foreshadowing more severe changes 

to come if current warming trends continue as projected. Such major alterations of New Mexico vegetation 

likely will also have substantial ecohydrological feedbacks with New Mexico water resources. Since water-related 

environmental stresses occur in parallel with water supply shortages for people, such climate-change driven water 

stress could lead to increasing conflict between management of declining water availability for human use (e.g., 

irrigation) versus “wild” water retained for the maintenance of historical ecosystems.
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Craig D. Allen

New Mexico, focusing on vegetation and associated 
linkages to ecohydrology, to provide important 
context for statewide assessment of water-resource 
issues. Although important, aquatic ecosystems 
and biodiversity considerations are outside the 
scope of this chapter.

Globally, the main limiting environmental factors 
that determine the distribution and productivity 
of dominant vegetation types are combinations of 
water, temperature, and sunlight (Boisvenue and 
Running, 2006). In warm tropical rainforests, sunlight 
limitation (from intense inter-plant competition 
for canopy space and clouds) is usually the main 
constraint on vegetation productivity, while in cold 

Introduction

O ngoing climate change—a mix of both natural 
climate variability and directional anthropogenic 

climate change—is a major driver of recently 
changing vegetation patterns in New Mexico, ranging 
from drought-induced forest die-offs and extreme 
wildfires to desertification of grasslands. Vegetation 
changes, in turn, affect various ecosystem processes 
that interact with and modify the geomorphology and 
hydrology of our landscapes—in this way, climate-
induced vegetation changes have consequences for 
the water resources of New Mexico that affect all 
state citizens. “Ecohydrology” is the interdisciplinary 
scientific field that addresses the interactions between 
ecosystems and hydrology. This chapter reviews the 
effects of climate change on terrestrial ecosystems in 
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Arctic and high alpine settings temperature is most 
limiting. However, in semiarid warm-temperate 
regions like New Mexico, water is generally the most 
limiting factor, with seasonally varying temperature 
constraints (e.g., frost and extreme heat) being 
important secondary drivers. Ongoing regional 
climate change toward warmer temperatures and 
more severe droughts therefore threatens vegetation 
types that are sensitive to hotter, drier conditions. 

The modern spatial distributions of New Mexico’s 
diverse plant species and vegetation communities 
(Dick-Peddie et al., 1993) are generally structured by 
these same broad climate factors of precipitation and 
temperature, although at local sites the patterning of 
vegetation is substantially modified by other abiotic 
and biotic environmental factors, and human land 
use practices. Major human land use practices include 
agriculture, livestock grazing, forestry activities, fire 
suppression, watershed modifications and water 
management actions, and urbanization. Important 
abiotic factors include topographic characteristics 
that affect local microclimate (e.g., elevation, slope, 
aspect, landform, slope position), soil and bedrock 
physical properties, nutrient availability, and 
various ecosystem disturbance processes (e.g., fire, 
floods, wind). Subsurface water storage in soils and 
fractured bedrock is increasingly recognized to be 
critically important for deep-rooted plants (Rempe 
and Dietrich, 2018; Klos et al., 2018; Bales and 
Dietrich, 2020). Key biotic factors also interact to 

influence local vegetation patterns, including soil 
microbiota, competition between plants, herbivory 
by animals, insect and disease pests, parasites, etc. As 
a result, there are sharp differences in microclimate 
and vegetation between cooler-moister north-facing 
slopes versus the microclimate and vegetation found 
on directly adjoining hotter-drier, south-facing 
slopes (Fig. 4.1). At even finer spatial scales, similar 
microclimate and understory vegetation contrasts 
also occur between the cooler ground-surface 
conditions underneath tree or shrub canopies versus 
plants adapted to exposed hotter conditions in 
open intercanopy sites. 

Paleo-environmental and Historical 
Perspectives on Climate-Vegetation 
Relationships in New Mexico 

Climate is a fundamental driver of vegetation 
patterns and processes—but how do we rigorously 
determine how ongoing and projected climate 
changes are likely to alter future vegetation? One 
approach is to reconstruct the linkages between past 
climate variability and vegetation, providing evidence 
to infer likely future changes.

Past climate-vegetation relationships are 
particularly well-documented for many thousands 
of years in New Mexico, because the southwestern 
U.S. contains an unusual abundance and diversity 

Figure 4.1. The strong effects of south versus north topographic aspect on vegetation pattern. Modified from Figure 3.1 in Dick-Peddie et al. (1993).
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of paleo-environmental data sources that allow 
reconstruction of detailed information on linkages 
between climate and vegetation through time 
(Swetnam and Betancourt, 1998; Swetnam et al., 
1999). For example, ancient lake sediments from the 
Valles Caldera (Jemez Mountains) provide multiple 
lines of evidence for major oscillations in climate 
and water balance (between colder-wetter versus 
warmer-drier) across multiple glacial-interglacial 
cycles over hundreds of thousands of years in 
northern New Mexico, with close linkages between 
climate and vegetation patterns (Fawcett et al., 
2011). For the last 40,000 years, plant macrofossils 
preserved in packrat middens provide powerful 
species-specific information on major changes in 
the biogeographic distribution of vegetation and 
climate across the Southwest (Betancourt et al., 
1990; Swetnam et al., 1999). Similarly, the pollen, 
macrofossils, charcoal, chemical isotopes, and 
numerous other paleo-environmental indicators 
found in the sediments of multiple New Mexico 
mountain lakes and bogs reveal greater detail on 
linked changes in climate and vegetation over the past 
20,000 years, particularly as the world transitioned 
from the last ice age (the Pleistocene epoch) to the 
Holocene about 12,000 years ago (e.g., Anderson et 
al., 2008b). These paleo-sediment studies also provide 
long-term perspectives on the environmental effects 
of relatively recent historical land-use changes like 
Euro-American livestock grazing and fire suppression 
in New Mexico (Allen et al., 2008; Brunelle et al., 
2014). Overall, these deep-time paleo-environmental 
studies consistently document that warmer periods in 
southwestern North America tend to be more arid—
resulting in the drying of lake and bog environments, 
transitions to vegetation communities dominated by 
species better adapted to warm and dry conditions, 
and more fire activity.

Tree-ring research in the Southwest U.S. and 
New Mexico provides well-replicated and diverse 
paleo-environmental evidence that is spatially 
widespread, precisely located, and dated at annual 
to seasonal resolution. Tree-ring widths, wood 
density, and isotope measurements are used 
to produce calibrated reconstructions of past 
precipitation (Touchan et al., 2011), temperature 
(Salzer and Kipfmueller, 2005), tree drought stress 
(McDowell et al., 2010; Williams et al., 2013), annual 
streamflow (Routson et al., 2011; Margolis et al., 
2011), and floods (McCord, 1996). Additionally, 

tree-ring-dated fire scars and other dendroecological 
observations document the environmental histories 
of New Mexico’s forest fires (Falk et al., 2011; 
Swetnam et al., 2016; Margolis et al., 2017), insect 
outbreaks (Swetnam and Lynch, 1993), and forest 
establishment, growth, and mortality (Guiterman 
et al., 2018). The southwestern United States is the 
most intensively sampled region of the world in 
terms of tree-ring reconstructions of climate and fire 
history, with numerous chronologies extending back 
more than 1,000 years before present (Grissino-
Mayer, 1995; Cook et al., 2007; Woodhouse et 
al., 2010; Williams et al., 2013). Southwestern 
climate reconstructions, based on tree-ring analyses, 
universally document high natural variability in 
precipitation at all timescales—annual, decadal, and 
even centennial (Grissino-Mayer, 1995; Williams 
et al., 2020a, b). There also has been recent success 
in separating cool-season precipitation from 
warm-season monsoonal precipitation in tree-ring 
reconstructions for New Mexico (Griffin et al., 2013), 
comparing reconstructed seasonal precipitation 
and Rio Grande streamflows back to 1659 CE 
(Woodhouse et al., 2013); and in assessing cool 
versus warm season precipitation effects on past fire 
occurrence (Margolis et al., 2017). Similarly, tree-ring 
temperature reconstructions for the Southwest also 
show significant variability through time (Salzer 
and Kipfmueller, 2005). These often well-replicated 
tree-ring studies quantitatively demonstrate the effects 
of both climate variability and human land uses 
on diverse forest ecosystem patterns and processes 
(Swetnam and Betancourt, 1998; Swetnam et al., 
2016; O’Connor et al., 2017; Guiterman et al., 
2019; Roos et al., 2021).

In addition, substantial historical ecology research 
(Allen, 1989; Swetnam et al., 1999) and numerous 
environmental history studies (Rothman, 1992; 
deBuys, 2015) have documented relatively recent 
(Anglo-American era, since ca. 1850) vegetation 
changes in New Mexico using historical observations 
and multiple other lines of evidence (Allen and 
Breshears, 1998)—ranging from General Land 
Office Survey field notes (Yanoff and Muldavin, 
2008), repeat photography of century-old ground-
based landscape photographs (Fuchs, 2002; deBuys 
and Allen, 2015), photo-interpretive mapping of 
vegetation from stereographic aerial photographs 
as far back as 1935 (Allen, 1989; Miller, 1999), and 
compilation and interpretation of diverse historical 
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maps and text documents (e.g., Hillerman, 1957; 
Scurlock, 1998). These historical ecology studies are 
particularly useful in documenting and illustrating the 
major effects of extended droughts versus extended 
wet periods upon New Mexico’s forest and rangeland 
vegetation (Swetnam and Betancourt, 1998; Allen 
and Breshears, 1998).

Finally—and most powerfully—direct 
measurements of climate and vegetation changes 
from a variety of long-term monitoring and research 
efforts over roughly the past century provide a solid 
foundation of quantitative observational data to 
assess recent and ongoing linkages between climate 
and vegetation in New Mexico. The effects of climate 
on vegetation change and ecosystem dynamics in 
New Mexico have been particularly well studied 
through long-term ecological research at three large 
and environmentally varied fieldwork localities that 
collectively represent a big portion of New Mexico’s 
diverse landscapes: 

1. The USDA Jornada Experimental Range 
(established 1912) and associated Jornada 
Long-Term Ecological Research (LTER) site 
(run by New Mexico State University since 
1982)—in southern New Mexico’s Chihuahuan 
Desert, focusing on subtropical desert 
grasslands and shrublands, and rangeland 
issues in general (https://jornada.nmsu.edu/ltar; 
https://lter.jornada.nmsu.edu/).

2. The USDI Sevilleta National Wildlife Refuge 
(established 1983) and associated Sevilleta 
Long-Term Ecological Research site (run by 
the University of New Mexico since 1988)—
extending from the Rio Grande to adjoining 
low mountains in central New Mexico at 
the intersection of four biomes: Colorado 
Plateau Shrub Steppe, Great Plains Short Grass 
Prairie, Chihuahuan Desert, and Piñon-Juniper 
Woodland (https://www.fws.gov/refuge/
Sevilleta/; https://sevlter.unm.edu/).

3. The Jemez Mountains, a volcanic “sky island” 
in northern New Mexico at the southern end 
of the Rocky Mountains, where the Valles 
Caldera National Preserve (est. 2000), Bandelier 
National Monument (est. 1916), and the 
USGS New Mexico Landscapes Field Station 
have collectively fostered long-term ecological 
monitoring and research since the 1980s on 

diverse montane forests, woodlands, grasslands, 
and streams along a 6,000-foot elevational 
gradient from the Rio Grande to Redondo Peak. 
These groups are partners in a new National 
Park Service (NPS) Research Learning Center 
(the in-development website address is: https://
www.nps.gov/rlc/jemezmountains/index.htm). 

All three of these large research landscapes are 
characterized by diverse, intensive, long-term studies 
and datasets; multidisciplinary research teams; and 
abundant published scientific research—documenting 
ongoing vegetation and ecosystem responses to 
climate variability and change. 

These recent observations of linked climate-
vegetation variability include documentation 
of multiple wet and dry periods since 1900 CE, 
ranging from a particularly wet window in the 
1910s–1920s that favored a huge pulse of successful 
tree regeneration across the Southwest U.S. 
(Pearson, 1950; Swetnam and Betancourt, 1998) 
to the regionally severe 1950s drought that caused 
great stress to vegetation and water resources in 
New Mexico (Hillerman, 1957; Thomas, 1963; 
Allen and Breshears, 1998). More recently, another 
wet period from the late 1970s to mid-1990s was 
a time of abundant water resources and extremely 
productive tree growth (Fig. 4.2). Since ca. 2000, 
New Mexico and the Southwest U.S. have been in 
the midst of an increasingly severe regional drought 
(Williams et al., 2013, 2020a, b; Cook et al., 2021). 
Although this current multi-decadal period of lower 
precipitation is not unusual relative to past patterns 
of natural precipitation variability, the drought stress 
effects on both vegetation and water resources are 
increasingly amplified by substantial recent climate 
warming (Fig. 1.1; McKinnon et al., 2021). This is 
one of the two most severe regional “megadroughts” 
in the past 1,200 years (Williams et al., 2020a, b; 
Cook et al., 2021). The ongoing “hotter drought” 
in New Mexico is consistent with projected climate 
changes for the Southwest (Chapter 2; Williams et 
al., 2013; Cook et al., 2015, 2021). As New Mexico’s 
environment has undergone this period of substantial 
warming and aridification, long-term ecological 
monitoring and research programs here have been 
able to precisely document and interpret the direct 
and indirect impacts of warmer “global-change-
type drought” on both vegetation and water 
resources in New Mexico. 

https://jornada.nmsu.edu/ltar
https://lter.jornada.nmsu.edu/
https://www.fws.gov/refuge/Sevilleta/
https://www.fws.gov/refuge/Sevilleta/
https://sevlter.unm.edu/
https://www.nps.gov/rlc/jemezmountains/index.htm
https://www.nps.gov/rlc/jemezmountains/index.htm
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Direct and Indirect Climate Effects on 
Vegetation and Ecohydrology

As described in Chapters 1–3, climate 
change in New Mexico is projected to continue 
recent trends toward warmer and thus generally 
more arid conditions, as well as to amplify wet, 
dry, and hot extremes. 

Climate variability and directional climate 
changes in precipitation and temperature modulate 
New Mexico’s vegetation cover in two general ways:

1. Directly through moisture and temperature 
effects on plant reproduction, growth and 
productivity, and mortality; and

2. Indirectly by altering ecological disturbance 
processes such as fires, insect and disease 
outbreaks, and floods. 

Direct Climate Effects on Vegetation—Climate 
changes directly alter New Mexico’s vegetation 
through effects on the demography of plant 
populations, including:

1. Reproduction—Plant populations in warm 
semiarid regions like New Mexico are 
characterized by episodic reproductive success 
linked to relatively infrequent, often multi-year, 
periods of favorable climate to sufficiently 
support abundant flowering, seed development 
(e.g., Parmenter et al., 2018), germination 
and seedling establishment. As a result, many 
dominant plant species establish primarily in 
pulses during the favorable climate periods, 
resulting in episodic even-aged cohorts of the 
dominant vegetation, whether Southwest U.S. 
trees (e.g., Swetnam and Betancourt, 1998) 
or grasses (e.g., Neilson, 1986; Collins et al., 
2014). Note that the range of climate conditions 
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Figure 4.2. A 1,000-year reconstruction of a regional “forest drought stress index” (FDSI) from tree rings in the Southwest U.S. Annual FDSI values 
in gray, 10-year moving average in red, for 1000–2007. Arrows mark megadroughts in the late 1200s and late 1500s, and the well-documented 
1950s historical drought. The -1.5 FDSI dashed line indicates an approximate historical threshold for tree mortality. The green circle highlights the 
unprecedentedly extreme FDSI in 2002, reflecting amplified drought stress from recent warming, which triggered extreme regional tree die-offs and 
wildfires. Modified from Williams et al. (2013) and Allen (2014).
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that support successful vegetation regeneration 
(the “regeneration niche”) is generally narrower 
than the broader climatic range in which adult 
plants can grow and persist, and that due to 
warming-induced aridity, the regeneration niche 
is likely now shrinking for many plant species 
(e.g., Bailey et al., 2021).

2. Growth—The moisture and temperature 
conditions of both the atmosphere and soils 
directly control plant growth and productivity 
(Fig. 4.1); globally, soil moisture stress 
dominates vegetation productivity, particularly 
in semiarid ecosystems (Liu et al., 2020). In 
mostly semiarid New Mexico, the high natural 
variability in precipitation (and soil moisture) 
(Fig. 4.2) drives the similarly high variability 
in growth of both woody and herbaceous 
vegetation (Rudgers et al., 2018; Koehn 
et al., 2021). When water is not a limiting 
factor, slightly warmer temperatures can be 
beneficial for plant growth (e.g., longer growing 
seasons); in addition, the substantially elevated 
atmospheric concentrations of CO2 can support 
increased water-use efficiency of photosynthesis 
(and thus good plant growth) when water 
stress is not extreme (De Kauwe et al., 2021). 
Also, atmospheric CO2 enrichment tends 
to favor C3 plants like woody conifers and 
shrub species over C4 plants like many warm-
season grasses (Archer et al., 2017; although 
see Reich et al., 2018). However, warming 
the last several decades has been enough to 
increase the frequency and severity of more 
arid atmospheric and soil conditions, thereby 
decreasing the supply of plant-available water 
(Breshears et al., 2013) and even beginning 
to approach thermal limits of photosynthesis 
(Duffy et al., 2021). These climate warming 
effects apparently are increasingly overcoming 
CO2 enrichment benefits (Peñuelas et al., 2017; 
Jiao et al., 2021; although see Lian et al., 
2021)—particularly in spring—and thereby 
reducing Southwest U.S. plant growth (Koehn 
et al., 2021; Munson et al., 2021). For example, 
warming has amplified conifer forest drought 
stress in the Southwest U.S., generally squeezing 
tree growth in New Mexico since ca. 2000 
(Fig. 4.2; Williams et al., 2013), particularly in 

the warmer and drier low-elevation portions 
of the elevation distribution of individual tree 
species (McDowell et al., 2010). Similarly, 
warming-amplified drought stress and 
increases in precipitation variability also are 
linked to observed declines in the growth and 
productivity of perennial grasses in arid desert 
grasslands of New Mexico (Gherardi and Sala, 
2015; Bestelmeyer et al., 2018; Rudgers et al., 
2018; Munson et al., 2021).

3. Mortality—Extremes of drought and/or heat 
can lead to pulses of amplified vegetation 
mortality, which can rapidly change the sizes, 
ages, and species composition of the dominant 
vegetation (Allen et al., 2010; McDowell et 
al., 2020). While drought- and heat-induced 
vegetation mortality is a natural response to 
historical climate variability (e.g., Allen and 
Breshears, 1998), the emergence of hotter 
“global-change-type” droughts in recent 
decades (Breshears et al., 2005) is linked to 
increasing observations of more extensive and 
severe episodes of tree mortality in diverse 
ecosystems regionally and globally (Allen et 
al., 2015 [especially Appendix A of that paper 
for New Mexico observations]). While forest 
die-offs have received the most attention 
scientifically, hotter drought events also are 
causing mortality pulses in southwestern 
shrublands and grasslands (Jacobsen and Pratt, 
2018; Winkler et al., 2019). Climate variability, 
particularly oscillation between increasingly wet 
and dry climate extremes, leads to “structural 
overshoot” of woody plants during growth-
favorable (wet) climate windows at both 
individual and stand scales, which can increase 
vulnerability to forest dieback during the 
inevitable subsequent swing to an unfavorable 
climate window (hotter drought) (Allen, 2014; 
Jump et al., 2017; Zavala, 2021).

Because each plant species has its own particular 
set of climate requirements, changes in climate cause 
demographic changes in plant populations that drive 
wide-ranging incremental shifts (both contractions 
and expansions) in the biogeographic distribution, 
abundance, and community dominance of 
essentially all plant species (e.g., Collins et al., 2014; 
Rudgers et al., 2018). 
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Expected direct effects of future climate warming 
on New Mexico’s vegetation include: 

1. The vegetation communities historically found 
on warmer, drier south-facing slopes will tend 
to “shift” (through colonization) onto adjoining 
north-facing slopes; 

2. More warm/dry (xeric) adapted plants 
from lower-elevation sites will shift their 
distributions upslope (Kelly and Goulden, 2008; 
Brusca et al., 2013); and 

3. Less cold-tolerant plants from southerly 
portions of New Mexico will shift their 
distributions northward and perhaps upslope 
(although note the recent documentation of 
warming temperature and dryness constraints 
on alpine tree establishment in northern 
New Mexico—Bailey et al., 2021).

While plant individuals, populations, vegetation 
communities, and ecosystems have substantial 
capabilities to adapt to some degree of climate change 
(cf. Allen et al., 2015), these adaptive capacities 
are limited and may be overwhelmed by the speed 
and magnitude of projected climate change—
warming in particular.

Thresholds—(cf. Chapter 1 “critical threshold” 
- or “tipping point” - events) Climate variability and 
change is one important driver of nonlinear threshold 
dynamics in ecosystem patterns and processes (Turner 
et al., 2020)—prominent New Mexico examples 
include drought-induced tree mortality, wildfire 
behavior, and water and wind erosion processes 
(Allen, 2007; Field et al., 2010; Bestelmeyer et al., 
2018). Abrupt vegetation transitions can result from 
both incremental climate changes and unprecedented 
climate extremes (Fig. 4.3; Allen et al., 2015); 
such vegetation changes from aridification may be 
reversible, or not (Berdugo et al., 2020; Munson 
et al., 2021). Note that even modest incremental 
shifts in the average value of a climate variable 
(e.g., daily maximum temperature) can result in 
substantial increases in the probability of the most 
extreme events at the far tail-end of the distribution 
(Fig. 4.4)—e.g., the extreme heat records set in 
June 2021 in the Pacific Northwest and Canada. 
Similarly, a shift in the sensitivity of a climate-related 
threshold (e.g., a warming-caused decrease in the 
duration of drought needed to trigger tree mortality 
[Fig. 4.5]), can greatly increase the probability that 
threshold-level extreme events occur. Increasingly 
extreme, unprecedented climate events—particularly 
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Figure 4.3. Ecosystem stress results from both general incremental trends and particular extreme events in climate (Jentsch et al., 2007). The 
red line indicates a shifting baseline level of forest stress through time due to an increasing trend in temperature; the gray line represents stress 
changes due to substantial multi-year oscillations in precipitation and temperature that are inherent in the climate system, producing stress events 
like extreme droughts and heat waves. Atmospheric warming increases both baseline and extreme drought stresses through time, thereby driving 
elevated tree mortality vulnerability. Increasing temperature alone drives greater forest drought stress (Adams et al., 2009; Williams et al., 2013), 
and because temperature is increasing chronically, so is forest stress. Swings in forest drought stress push forests closer (or further) from the 
historical mortality threshold (dashed black line), but given the chronic increase in forest stress associated with ongoing anthropogenic warming, the 
frequency, magnitude, and duration of these swings above the mortality threshold increase through time. If unabated, chronic warming eventually will 
cause even relatively wet periods to exceed the mortality stress threshold for present-day forests. From Allen et al. (2015).
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Figure 4.4. Warming greatly increases the frequency of extreme temperature days and heat waves. Daily maximum temperature (a), number of 
days over 40°C (b), and number of heat wave events (c) for Perth, Western Australia, for historical (1910–1939; gray) and current (1989–2018; red) 
29-year periods. A small change in the overall distribution has led to more than a doubling in days > 40°C and a 59% increase in heat wave events. 
From Breshears et al. (2021).

Figure 4.5. Warming greatly increases frequency of tree-killing drought events. Drought frequency (black line) increases nonlinearly as drought 
duration decreases, as there are many more short-duration droughts than long ones (Lauenroth and Bradford, 2009), and during cooler historical 
times only a few extremely long-duration drought events were long enough to exceed the historical tree mortality threshold (blue dashed vertical line). 
Under warmer recent and future drought conditions, trees die faster (red dashed vertical line, warmer mortality duration threshold) than with cooler 
droughts (blue dashed vertical line, cooler mortality duration threshold), resulting in more tree-killing drought events at the minimum duration mortality 
threshold for hotter drought (horizontal red arrow line) than for cooler drought (horizontal blue arrow line). This cumulatively translates into more total 
tree-killing droughts under hotter drought conditions (filled red + blue areas) than under cooler drought conditions (filled blue area only) because 
many additional shorter duration droughts become lethal with warming (Adams et al., 2009). From Allen et al. (2015).
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droughts and heat waves—are emerging as ever-more 
important drivers of severe ecosystem disturbances 
and abrupt vegetation changes in the Southwest U.S. 
(Allen, 2014; Breshears et al., 2021).

Indirect Climate Effects on Vegetation through 
Altered Ecosystem Disturbance Processes— Recent, 
ongoing climate change also is indirectly, but 
profoundly, altering vegetation patterns by amplifying 
a variety of ecosystem disturbance processes that also 
affect water and watersheds. Documented effects of 
these climate-amplified disturbances on vegetation in 
New Mexico include: 

1. More extreme pulses of tree mortality and 
forest die-offs (Fig. 4.6) from physiological 
stress due to hotter-drought (Breshears et 
al., 2005; Williams et al., 2013; Allen et al., 
2015 [Appendix A of that paper]), often 
with associated bark beetle and other insect 
outbreaks (Raffa et al., 2008; Anderegg et al., 
2015)—also including novel insect outbreak 
dynamics linked to recent warming (Figs. 4.7a, 
4.7b; Elliott et al., 2021).

2. Warming has substantially altered recent 
wildfire activity in the Southwest U.S. and New 
Mexico (Fig. 4.8), with changes in frequency, 
severity, area burned, seasonality, and longer 
fire seasons (Westerling et al., 2006; Abatzoglou 
and Williams, 2016). Wildfire activity has 
recently increased upslope into cooler-wetter 
forest types (Higuera et al., 2021) as well as 
downslope into semiarid woodlands (Floyd et 
al., 2000, 2021; Romme et al., 2009). Recent 

increases in the extent and frequency of high-
severity fire (Parks and Abatzoglou, 2020) 
are strongly filtering which species are able to 
regenerate post-fire (Johnstone et al., 2016; 
Coop et al., 2020). One result is an increase in 
vegetation “type conversion” from gymnosperm 
conifer forests that require nearby fire-surviving 
trees for seed regeneration to shrublands and 
grasslands (Fig. 4.9; Allen, 2014) dominated 
by resprouting angiosperm species that can 
regenerate after severe fire from surviving 
below-ground roots, tubers, etc. (Guiterman et 
al., 2018; Coop et al., 2020). 

3. High-severity wildfires also cause extreme 
alterations of watershed vegetation cover and 
surface soil properties that can trigger post-
fire floods and debris flows (Fig. 4.10); these 
disturbances are addressed in Chapters 6 and 9.

4. Ongoing warming-induced aridification and 
disturbances drive widespread reductions in 
vegetation cover below critical thresholds in 
many New Mexico landscapes (Davenport et 
al., 1998; Breshears et al., 2009; Field et al., 
2010), resulting in generalized upland soil 
erosion by water (Wilcox et al., 2003) and wind 
(Munson et al., 2011; Duniway et al., 2019); 
these disturbances are addressed in Chapter 5.

5. Warming-induced desertification of desert 
grasslands (Fig. 4.11) is contributing 
to declines in perennial grass cover and 
increases in subtropical woody shrubs 
(Bestelmeyer et al., 2018).

Figure 4.6. Repeat photos of landscape-scale mortality of piñon (Pinus edulis) from hotter drought and an associated bark beetle outbreak. (a) Rust-
colored dying piñon, eastern Jemez Mountains, October 2002. (b) The same scene 18 months later, with gray piñon skeletons and remaining live 
junipers, May 2004. Photos by Craig D. Allen

A B



N E W  M E X I C O  B U R E A U  O F  G E O L O G Y  A N D  M I N E R A L  R E S O U R C E S   

46

Figure 4.7. (a) Novel insect outbreak dynamics. Aerial photo of Janet’s Looper outbreak during 2017–2019 in the Sangre de Cristo Mountains 
near Santa Fe, with red-rusty-gray tree canopies from winter herbivory of Douglas-fir and Engelmann spruce tree needles by caterpillars (inset 
photo) of this inconspicuous moth. Recent warmer winters allowed the first recorded outbreak of this native insect in northern New Mexico. Photos 
by U.S. Forest Service

Figure 4.7. (b) Novel insect outbreak dynamics. Photos of extensive and unusually high-elevation Engelmann spruce (Picea engelmannii) mortality 
at and near upper treeline, caused by a combination of warming-amplified drought stress and an associated outbreak of the native spruce bark 
beetle (Dendroctonus rufipennis) killing over 80% of mature spruce trees across thousands of hectares in the headwaters of the Pecos River in the 
Sangre de Cristo Mountains. Photos by William deBuys (October 2020)
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Figure 4.8. (a) Start of the Las Conchas Fire, 26 June 2011. Photo by Craig D. Allen

Figure 4.8. (b) Upper Cochiti Canyon in the Jemez Mountains seven weeks after being burned in the 
2011 Las Conchas Fire. High-severity fire affected almost the entire Cochiti Canyon watershed, from 
upper-elevation mixed-conifer forests along the rim of the Valles Caldera down to near the confluence 
with the Rio Grande. This extensive loss of vegetative cover across the watershed led to substantial 
flooding from 2011–2013. Photo by Craig D. Allen

Figure 4.8. (c) High-severity fire effects in desertified piñon-juniper woodland in the southeast Jemez 
Mountains, taken August 2011, two months after being burned in the Las Conchas Fire. Note complete 
exposure of soil surface from fire consumption of all live and dead plant cover. Photo by Craig D. Allen
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Figure 4.9. (a) Fire-caused type conversion from conifer forest to oak shrubland, Dalton Fire footprint near Pecos, NM. 
There is evidence that the increasingly large extent of post-fire conversions of forests into potentially quite-persistent, 
shrublands is a novel recent development in New Mexico conifer ecosystems. Photo by Craig D. Allen

Figure 4.9. (b) Conceptual model of alternative post-disturbance stable states in dry conifer forest and shrub ecosystems of New Mexico, depending 
upon histories and combinations of disturbances. From Guiterman et al. (2018).
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Note the importance of synergistic interactions 
among ecosystem disturbances, both within and 
across spatial scales (Allen, 2007; Turner et al., 
2020). For example, warming drives the increased 
atmospheric-vapor pressure deficit (Williams et al., 
2013), leading to greater drying of vegetation and 
soils that can amplify multiple individual disturbance 
processes (e.g., dieback, fire, erosion), which in 
turn also can interact with each other through 
diverse feedbacks (Allen, 2007), such as post-fire 
debris flows (Fig. 4.10).

Anticipated Effects of Ongoing and Future 
Climate Change on New Mexico’s Ecosystems

Aquatic Ecosystems—Although aquatic 
ecosystems are outside the scope of this chapter, 
several broad assessments of climate change effects 
on the aquatic ecosystems of New Mexico are listed 
here. The New Mexico State Wildlife Action Plan 
(NMDGF, 2016) reviews the characteristics and 

climate change vulnerabilities of New Mexico’s 
diverse aquatic ecosystems, including a broad 
range of perennial systems (cold and warm water 
streams, lakes, cirques, ponds, marshes, cienegas, 
springs, seeps, cold and warm water reservoirs) 
and ephemeral systems (marshes, cienegas, springs, 
playas, pools, tinajas, kettles). In a separate effort, 
the U.S. Forest Service (USFS) recently conducted 
an “Aquatic-Riparian Climate Change Vulnerability 
Assessment” (ARCCVA) of ongoing and potential 
effects of climate and drought at subwatershed-scale 
(HUC12) for perennial and intermittent/ephemeral 
waters on all lands of Arizona and New Mexico 
(Wahlberg et al., 2021), built upon existing data 
for over two dozen intrinsic and climate-related 
indicators associated with watershed condition, 
riparian and aquatic habitat, and the presence of 
warm- and cold-water fish that represent both 
impact risk and adaptive capacity. The ARCCVA 
geodataset can be downloaded at: https://www.
fs.usda.gov/detailfull/r3/landmanagement/gis/?cid=stel
prdb5201889&width=full.

Figure 4.10. Gullies eroded by debris flows in upper Santa Clara Canyon, triggered by the 2011 Las Conchas Fire. Photo 
by Craig D. Allen (2015)

https://www.fs.usda.gov/detailfull/r3/landmanagement/gis/?cid=stelprdb5201889&width=full
https://www.fs.usda.gov/detailfull/r3/landmanagement/gis/?cid=stelprdb5201889&width=full
https://www.fs.usda.gov/detailfull/r3/landmanagement/gis/?cid=stelprdb5201889&width=full
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Biodiversity Considerations—New Mexico 
harbors an exceptional diversity of plants and 
animals, ranking fourth in the U.S. in the number 
of species (https://nhnm.unm.edu/). Climate change 
will have a broad range of effects on the plant and 
animal biodiversity of New Mexico that are beyond 
the scope of this chapter; however, several key sources 
of information relative to climate change effects on 
biodiversity in New Mexico are noted here. Natural 
Heritage New Mexico (https://nhnm.unm.edu/), a 
division of the Museum of Southwestern Biology at 
the University of New Mexico, does climate-change-
related research on the conservation and sustainable 
management of New Mexico’s biodiversity, and 
serves as a portal for acquiring and disseminating 
biodiversity conservation information for 
New Mexico. The New Mexico State Wildlife Action 
Plan (NMDGF, 2016) reviews the climate change 
vulnerabilities of New Mexico’s terrestrial and aquatic 
ecosystems, with a focus on habitats for wildlife 
and fish. This State Wildlife Action Plan (SWAP) 
also addresses the climate change vulnerabilities 
of animal “species of greatest conservation need.” 
Much additional detailed information on climate 
change implications for New Mexico’s biodiversity is 
contained in a SWAP-associated online background 
document (Friggens, 2015). The “New Mexico Rare 
Plant Conservation Strategy” (NMEMNRD, 2017) 
is focused on 235 rare and endangered plant species 
in New Mexico, including 109 endemic species that 
only occur in New Mexico and nowhere else in the 
world. The overall goal of the New Mexico Rare 
Plant Conservation Strategy is to protect and conserve 
New Mexico’s rare and endangered plant species 
and their habitats, which are distributed among 135 
Important Plant Areas (IPAs) across the state. The 
associated “New Mexico Rare Plant Conservation 
Scorecard” provides an analysis of the current 
conservation status of the 235 rare plants, including 
threats such as climate change. 

Forests and Woodlands—Future climate warming 
and increased precipitation variability are anticipated 
to directly depress regional woody-vegetation 
productivity (Williams et al., 2013; Munson et al., 
2021) and promote Southwest forest die-offs from 
hotter droughts (McDowell et al., 2015; Goulden 
and Bales, 2019). In concert with the associated 
intensification of ecosystem disturbances, particularly 
high-severity wildfire (Bowman et al., 2020; Pausas 

and Keeley, 2021), ongoing warming in New Mexico 
montane forests and upland woodlands is expected 
to increasingly constrain tree regeneration (Davis et 
al., 2019; Rodman et al., 2020; Bailey et al., 2021; 
Nolan et al., 2021) and further amplify widespread 
vegetation type-conversion from tree-dominated 
forests and woodlands to non-forest ecosystems 
(Allen, 2014; Guiterman et al., 2018; Coop et al., 
2020; Davis et al., 2020). Drier, low-elevation 
distributions and ecotone margins of individual tree 
species and particular vegetation communities will 
tend to respond to growing drought and heat stress 
with early, rapid, and pronounced mortality-induced 
upslope range retraction (Allen and Breshears, 1998; 
Davis et al., 2019; Parks et al., 2019).

Grasslands and Shrublands—Long-term 
research in southern New Mexico’s desert grasslands 
finds that projected future climate warming and 
increased variability of wet/dry years will affect grass 
production and grass-shrub relationships (Peters et 
al., 2010; Gherardi and Sala, 2015; Gremer et al., 
2015; Petrie et al., 2018). Multiple lines of evidence 
(from climate/vegetation monitoring, experiments, 
models) indicate that these warm semiarid/arid 
grasslands will see additional declines in perennial 
grasses and increases in shrubs (Fig. 4.11; Archer 
et al., 2017; Bestelmeyer et al., 2018), reflecting a 
documented ongoing conversion of New Mexico’s 
temperate drylands (e.g., desert and plains grasslands) 
to subtropical drylands (Schlaepfer et al., 2017; 
Bestelmeyer et al., 2018). However, in some grassland 
settings there may be drying of deep soils that could 
reduce shrub cover (Schlaepfer et al., 2017).

Riparian Forests—As perennial streamflows 
decline and become more intermittent and ephemeral, 
riparian gallery forests of cottonwoods in areas 
like the Middle Rio Grande probably will become 
increasingly vulnerable to growth reductions and 
dieback from more variable and generally lower 
water-table depths (Rood et al., 2013; Thibault et 
al., 2017; Condon et al., 2020; Varney et al., 2020; 
Kibler et al., 2021). Meanwhile, opportunities for 
post-flood pulses of native riparian tree regeneration 
will diminish (Molles et al., 1998; Perry et al., 2012). 
Reductions in riparian vegetation canopy cover 
will have substantial warming effects on stream 
temperatures (Wondzell et al., 2019).

https://nhnm.unm.edu/
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Overall, globally as well as regionally in 
New Mexico, currently there are substantial 
uncertainties regarding the specifics of how rapidly 
and profoundly New Mexico ecosystems will 
reorganize in response to these direct and indirect 
climate change effects, as well as the particular 
outcomes of potentially novel post-disturbance 
vegetation trajectories (e.g., Figs. 4.7a, 4.7b, 4.8b, 
4.8c, and 4.9a). In addition, we should expect 
that many of the newly transformed vegetation 
communities that are emerging today will be 
ephemeral, subject to further reorganization as 
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Figure 4.11. Evidence for a major historical grassland–to-shrubland transition in the Jornada Basin of southern New Mexico. (a) The initial collapse of 
black grama (Bouteloua eriopoda) production during the 1950s drought. (b) A 1936 photograph illustrating the effects of overgrazing during the 1930s 
drought. (c) The appearance of small honey mesquite (Prosopis glandulosa) shrubs in 1956. (d) The site in 2009, dominated by mesquite shrubs and 
with evidence of significant soil erosion exposing an indurated petrocalcic soil horizon (caliche). From Bestelmeyer et al. (2018).

ongoing climate-change drives continued direct and 
indirect ecosystem responses for the foreseeable 
future (Jackson, 2021). 

Ecohydrological impacts of these climate-induced 
vegetation changes include—

1. Effects on the hydrological cycle of decreased 
vegetation cover such as increased evaporation, 
drier soils, and decreased transpiration, leading 
to positive feedbacks on regional warming 
and aridification in the Southwest U.S. 
(McKinnon et al., 2021).
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2. Canopy change impacts to snowpack and 
spring snowmelt runoff (e.g., Belmonte et al., 
2021). This effect began with twentieth century 
declines in snowpack and water yield due to 
regional forest densification (cf. McDonald 
& Stednick, 2003; Broxton et al., 2020) but 
subsequently transitioning to twenty-first 
century declines in water yield from excessive 
forest cover loss from wildfire and forest 
dieback processes (Harpold et al., 2014; 
Biederman et al., 2015; Stevens, 2017; Moeser 
et al., 2020 [although see Bales et al., 2020, and 
Bart et al., 2021]). In addition, direct effects of 
climate warming on snowpack dynamics is a 
factor (Milly and Dunne, 2020).

3. Direct or indirect reductions in forest biomass 
(e.g., through drought-induced dieback, 
fire, or mechanical thinning treatments) 
can substantially alter evaporation and 
transpiration, with potential to increase 
streamflow in some water-limited systems 
(Bart et al., 2021).

4. Fire-driven changes in watershed runoff and 
erosion processes; these are addressed in 
Chapter 6 and Chapter 9.

5. Changing connectivity of upland bare 
soil surfaces, affecting runoff, infiltration, 
geomorphic wind/water erosion processes (both 
directly through changes in vegetation cover, 
and indirectly through disturbances); these are 
addressed in Chapter 5.

6. Recent warming-related land cover 
changes (woodland tree dieback and shrub 
encroachment) in New Mexico alter site-level 
biophysical conditions (including aerodynamic 
conductance, albedo, and canopy conductance) 
in ways that can further increase surface 
temperatures (Duman et al., 2021)—with 
potential for further intensification of surface 
warming with expected future reductions in 
soil water availability.

Summary of Ecosystem Impacts and 
Responses

Climate is a fundamental driver of ongoing 
and future vegetation and ecosystem changes, 
with resulting effects on ecohydrological patterns 
and processes that will affect the distribution and 
abundance of water resources in New Mexico 
(Wilcox, 2010). While paleo-ecological evidence 
clearly demonstrates major past shifts in climate-
vegetation across New Mexico’s landscapes, the 
large magnitude and rapidity of recent and projected 
climate change is thought to be unprecedented 
during the past 11,000 years at least, and probably 
much longer. Recent chronic warming, along 
with increasingly unprecedented episodes of 
extreme hotter drought stress, have already driven 
substantial changes in New Mexico’s vegetation 
over the past twenty years, foreshadowing massive 
reorganization of vegetation distributions and 
reductions in vegetative ground cover if current 
warming trends continue as projected (e.g., Jennings 
and Harris, 2017; Triepke et al., 2019). Such major 
alterations of New Mexico’s vegetation would also 
have substantial ecohydrological feedbacks with 
New Mexico water resources. Since water-related 
environmental stresses occur in parallel with water-
supply shortages for people, such climate-change 
driven water stress could lead to increasing conflict 
between management of declining water availability 
for human use (e.g., irrigation) versus “wild” water 
retained for the maintenance of historical ecosystem 
values and services (e.g., Grant et al., 2013; NMDGF, 
2016; Wahlberg et al., 2021). However, through 
collaborative translational approaches (Jackson, 
2021), thoughtful anticipatory planning (Bradford 
et al., 2018), and forward-looking ecosystem 
management actions (e.g., Schuurman et al., 2020), 
there is also the potential for creative adaptive 
conservation strategies that increase resilience to 
water shortages for both New Mexico ecosystems 
and our intimately linked human societies.
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Knowledge Gaps, Uncertainties, and 
Strategic Areas Where New Mexico Might 
Want to Invest in Further Research

1. Further research is needed on the hydrological 
responses (e.g., changes in watershed 
evapotranspiration, timing and magnitude 
of surface-water runoff) to observed and 
anticipated watershed vegetation changes 
and ecosystem disturbances. For example, 
watershed research in California’s Sierra 
Nevada shows that direct or indirect 
reductions in forest biomass (e.g., through 
drought-induced dieback, fire, or mechanical 
thinning treatments) can substantially alter 
evaporation and transpiration in overgrown 
forests, with potential to increase both forest 
resilience and streamflow in some water-limited 
systems (Bart et al., 2021). Are these findings 
potentially relevant to our somewhat similar 
but also substantially different higher-elevation 
montane forest watersheds in New Mexico 
and southern Colorado?

2. The usefulness of today’s complex process-
based models that are used to project vegetation 
dynamics in response to changes in climate 
drivers is currently limited by large uncertainties 
from several sources, including the lack of 
realistic ecosystem disturbance processes. Thus 
one essential research need is to develop and 
incorporate more realistic, well-parameterized, 
and better validated representations of 
ecosystem disturbance processes (e.g., 
climate-induced vegetation mortality, insect 
pest outbreaks, wildfire) into process-based 
vegetation models, including synergistic 
interactions among disturbance processes.

3. A general complementary approach to 
constrain the large uncertainties associated 
with projections of future vegetation dynamics 
from current process-based models is the 
development of empirical models that are 
directly based upon observational data. One 
Southwest U.S. example is the “forest drought 
stress index” of Williams et al. (2013), which is 
an empirical model of climate relationships to 
forest growth that also turns out to be strongly 
predictive of the regional extent of climate-
related, tree-killing, bark beetle outbreaks and 
high-severity fires.

4. Further research is needed to sort out 
variability in findings regarding the effects of 
shrub dominance on deep soil moisture and 
potential shrub-related aquifer recharge in 
some desert landscapes (Sandvig and Phillips, 
2006; Schlaepfer et al., 2017; Schreiner-
McGraw et al., 2020).

5. Long-term ecological monitoring and research 
that is field-based in, and representative of, 
the diverse range of New Mexico landscapes 
is needed to adequately document, sufficiently 
understand, and effectively address: (1) 
current uncertainties and the expectation of 
many further tipping-point surprises over 
the rate, magnitude, patterns, and drivers of 
ecosystem reorganization in New Mexico 
relative to projected climate changes over the 
next 50 years; (2) associated ecohydrological 
responses; (3) modeling needs for better 
parameterization and validation of climate-
ecosystem process models; and (4) effective 
societal adaptations to anticipated climate 
change impacts to land and water resources 
(Bradford et al., 2018).
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Mass-Balance Accounting Models—To date, the 
only model that has been employed to empirically 
estimate the water balance for the entire state of 
New Mexico is a systems-dynamics mass-balance 
accounting model called the ‘New Mexico Dynamic 
Statewide Water Budget Model’ (Peterson et al., 
2019). Such models use relatively simple equations 
that conserve mass or volume as hydrological 
flows that are routed or transferred, for example 
from the soil-water reservoir to the atmosphere via 
evapotranspiration. This type of model is also termed 
‘lumped-parameter’ or ‘bucket models’ because 
models of this type do not attempt to spatially 
resolve the hydrological processes, but rather divide 
up the area into sub-units (e.g., counties or water-
planning regions, which are treated like ‘buckets’ 
districts) that are treated as being homogeneous. 
The hydrological transfers are often quantified using 
empirical constants that are derived from historical 
studies, for example, estimation of the fraction of the 
snowpack that becomes runoff, based on past snow 
surveys and stream gaging. 

Although they are a valuable tool for 
understanding the current water balance, their utility 
is limited for future projections under changing 
climate. This is partly because their lack of spatial 
resolution does not account for variations of 
hydrological response across a varied landscape, 
but more fundamentally it is because the empirical 
formulations that they often employ were derived 
by observations under constant climate and are 
likely to be inaccurate under different climate 
conditions in the future.

One-Dimensional Surface Process Models—
There is a large family of models that use physical 
formulations (as opposed to empirical ones) to 

Modeling Approaches for Projecting Changes in the Land-Surface Water Budget

I n order to generate projections that have real 
predictive value at sufficient resolution to be 

useful, surface hydrologic models must have several 
characteristics. One is based on the observation that 
New Mexico is large and contains greatly varied 
topography and local climate. This means that Global 
Climate generalized models are of little value until 
their output is downscaled to finer resolution. Useful 
models must be capable of simulating the effects of 
climate change at the local scale (described below). 
A second is that models based on historical empirical 
observations are not likely to correctly predict future 
behavior when the system behaves differently than 
it does now. Rather, these models should be based 
on physical principles that are generally valid. A 
third is the degree of difficulty in constructing and 
running the model. Very highly resolved and complex 
models may be difficult to employ because of the 
computational demands (e.g., they run on only a 
supercomputer) and because it is very difficult to 
accurately supply all of the parameters that are 
needed to construct the model. 

The basis for obtaining future projections of the 
hydrologic budget under changing climate usually 
starts with the output of GCMs that are driven by 
standardized greenhouse-gas emission scenarios 
developed by the IPCC. The coarse-resolution GCM 
outputs are converted to finer scales in a process 
called ‘downscaling’. The outputs for the historical 
period are statistically adjusted to match the statistics 
of the observations for the same period and this 
adjustment is then used on the climate-model outputs 
for the future. The downscaled sequence of climate 
parameters is then used to drive the state-scale water 
balance models. Below we review several water-
balance models that have been used for estimating 
recharge and runoff in New Mexico.
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simulate the division of hydrological flows at the land 
surface, but only as a purely vertical process. This 
is reasonable to a first approximation, noting that 
the vertical flows in Fig. 3.1 are much larger than 
the horizontal flows. For the most part these models 
employ physics-based formulations to calculate 
flows and transformations and should thus have 
predictive power under changing climate. They are 
computationally straightforward and can thus be used 
at high spatial and temporal resolution to capture 
effects of topography and vegetation variation and 
other heterogeneities. Their main limitation is that 
they cannot include lateral flows of water, except 
on the land surface. Lateral flows are important to 
generating runoff and to focusing shallow subsurface 
flow to become recharge. 

The most important of these is the Variable 
Infiltration Capacity (VIC) model (Liang et al., 1994). 
It is commonly used in conjunction with GCMs to 
make coarse-resolution hydrological projections. 
It is also the most common hydrological model to 
be coupled with downscaled GCM output for finer 
resolution local projections. A significant limitation of 
VIC is that it, at least in the original version, does not 
explicitly quantify groundwater recharge. Rather, any 
excess water at the base of the root zone is directly 
routed to surface flow. This is a reflection of common 
hydrological conditions in humid regions. 

A code that has been explicitly employed to 
compute groundwater recharge is the WaterGAP 
Global Hydrology Model (WGHM) (Döll et al., 
2003; Döll and Fiedler, 2008). This model was 

incapable of realistically simulating groundwater 
recharge in arid and semiarid environments without 
arbitrary adjustments (Döll, 2009). 

Only one such model has been developed 
and applied specifically to calculate recharge in 
the New Mexico environment: Python Recharge 
Assessment for New Mexico Aquifers (PyRANA) 
(Ketchum, 2016; Xu, 2018; Parrish, 2020). This 
model employs the dual crop-coefficient method 
of calculating evapotranspiration (Allen and 
Breshears, 1998) to obtain accurate water-balance 
in New Mexico’s semiarid climate and is efficient to 
run at very high spatial and temporal resolution in 
order to meet the challenge of the state’s irregular 
topography. However, in its current configuration, it 
does not incorporate interception of precipitation by 
plant leaves, which can significantly affect the land-
surface-water balance, especially in forested areas.

Three-Dimensional Hydrological System 
Models—A more complex family of models attempts 
to mimic the entire hydrological system, including 
hydrometeorological, land surface, surface-water, and 
groundwater components, in three dimensions. This 
allows them to account for some phenomena that 
cannot be represented in more simplified models, but 
at the cost of much greater computational expense. 
They generally can only be run on supercomputers.

The most relevant of these to our purpose is 
ParFlow-CLM, developed for high-resolution global 
simulations of the hydrological cycle under current 
and future conditions (Maxwell and Miller, 2005). 
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soils with properties that reflect weathering of 
volcanic parent materials). The large spatial extent 
of Aridisols (well-developed soils that form in an 
“Aridic” soil moisture regime), an order that has six 
suborders in New Mexico (Fig. B.3) reflects the arid 
climate of many areas of New Mexico. The large 
area with Mollisols (soils typical of grassland and 
prairies with a thick, darkened surface A horizon - a 
‘Mollic’ epipedon) reflect the semiarid areas of New 
Mexico that support shortgrass communities. Alfisol 
(high base-status soils with fine textured subsurface 

Soil Diversity in New Mexico and the “CLORPT” Approach in the Studies of Soil Landscapes

Figure B.1. Soil orders distribution map of the United States and Territories (http://www.nrcs.usda.gov/wps/portal/nrcs/)

T he map of soils of the United States at the level 
of soil orders (the highest taxonomic level of soil 

classification in the U.S. Department of Agriculture 
[USDA] Soil Taxonomy) (Fig. B.1) illustrates the large 
range of very different soil types that are present in 
the landscapes of New Mexico (Fig. B.2). At least 
six of the twelve soil orders are evident at this map 
scale (Entisols, Inceptisols, Aridisols, Mollisols, 
Alfisols, Vertisols); at least one other soil classified 
in another order can be found locally in some 
landscapes in favorable circumstances (Andisols, 
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Figure B.2. Soil orders in New Mexico (http://www.nrcs.usda.gov/wps/portal/nrcs/). 



161

  A P P E N D I X  B

Figure B.3. Map of the suborders of Aridisols in the United States (NRCS image, https://www.nrcs.usda.gov/Internet/FSE_MEDIA/stelprdb1237729.
jpg). The large spatial extent of these suborders in New Mexico as well as other regions of the western United States reflects an arid climate and 
associated soil-forming processes favored by an “aridic” soil moisture regime. 

https://www.nrcs.usda.gov/Internet/FSE_MEDIA/stelprdb1237729.jpg
https://www.nrcs.usda.gov/Internet/FSE_MEDIA/stelprdb1237729.jpg
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B horizons) can be found in areas of greater annual 
precipitation at typically higher elevations. Of 
course, at other levels of the Taxonomy or in Natural 
Resources Conservation Service (NRCS) soil maps 
of much smaller regions, literally many dozens of 
Suborders and much larger numbers of Great Groups, 
Subgroups, Series, and Types are present (USDA). 

Substantial soil diversity in New Mexico reflects 
the highly variable topography, climate, vegetation 
and rock types that characterize the state. Much 
of this variability reflects, to a large extent, the 
consequences of Cenozoic tectonic processes that 
ultimately caused, for example, uplift of the lofty 
southern Rocky Mountains or the development of 
lower elevation dryland basin landscapes of the Rio 
Grande rift. Topography, climate, vegetation, and 
rock types constitute the most important factors that 
influence the many soil-forming processes and overall 
soil profile development. 

Soil chronosequences are one of several types 
of sequences of soils designed to enable scientists to 
ascertain the influences of factors such as climate 
(Cl), organisms, or biotic factors (O), local and 
regional relief (R; essentially also characterized as 
“topography”), parent material characteristics (P) 
of processes of soil development (Jenny, 1941). A 
remaining attribute of soils, their age (T), enables 
recognition of the degree to which some processes 
are strongly time dependent. Although other factors 
certainly influence soil-forming processes, these five 
factors are generally regarded as the most critical 
ones to the extent that collectively they define the 
“state” of the soil (or a particular soil property) 
(Birkeland, 1999), and they have come to be generally 
known as CLORPT. This conceptual framework 
used in soil geomorphic research is often referred 
to as the “State Factor” approach (or the CLORPT 
approach). Through careful selection of groups 
of soils in circumstances such that the influences 
of one factor can be isolated or selectively varied, 
while the influences of the others are essentially 
held constant, different soil “functions” associated 
with the CLORPT factors can be determined (Jenny, 
1941; Birkeland, 1999; McFadden, 2013). To identify 
differences amongst a group of soils that primarily 
reflect soil age, a soil chronosequence is established, 
and a time-dependent change in soil morphology 
(or a given property) is called a chronofunction. Soil 
chronosequence studies usually involve selection of 

geomorphic surfaces with relatively low gradients 
and generally low relief, features that engender 
geomorphically stable conditions, which in turn 
favor continuous soil formation and morphological 
property development on time scales ranging 
from a few hundred to several hundred thousand 
years (Birkeland, 1999).

Other soil sequences can be established in 
a given region that emphasize topography (soil 
toposequences, or sometimes referred to as a “catena” 
(Fig. B.4)). Studies of toposequences prove invaluable 
in the study of hillslope form and processes, as they 
are geomorphically unstable when compared to, for 
example, the surfaces of fluvial terraces (Birkeland, 
1999; McFadden, 2013). Similarly, the role 
played by different soil parent materials (the earth 
materials in which soils form) substrate (e.g., weakly 
cemented sedimentary rocks, crystalline igneous and 
metamorphic rocks, alluvium) in influencing soil 
development can be assessed through studies of soil 
lithosequences (Birkeland, 1999). 

Drainage Basin Hillslopes and Soils 
The hillslopes of drainage basins (“watersheds”) 

are the major areas of aquifer recharge and the 
primary source of water and sediment discharge to 
fluvial channels in most landscapes. In New Mexico 
and adjacent states, substantial runoff and recharge 
is generated from mountainous areas (see relevant 
sections in this report). These include the San Juan, 
Sangre de Cristo, Jemez, Black Range, Sacramento, 
Sandia, Zuni, and Mogollon Mountains, all of 
which have relatively extensive high elevation areas 
(greater than 10,000 feet) with elevations in a few 
cases exceeding 12,000 feet. In many drainage 
basin hillslopes of these mountains, weathering of 
exposed bedrock or bedrock beneath a cover of 
hillslope sediments produces “regolith”. In some 
studies, formation of regolith, either in situ or mobile, 
by this process is referred to as “soil production” 
(Heimsath et al., 1997; Bierman and Montgomery, 
2019). The formation of regolith occurs mainly 
through biogeochemical weathering of bedrock. 
The initial alteration of bedrock that is essential 
in influencing subsequent chemical weathering 
rates and the eventual development of soil that 
enables colonization by vascular plants involves the 
development of secondary porosity and resultant 
increased water-holding capacity (Graham et al., 
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2010). Some studies in New Mexico mountainous, 
and other high elevation study areas, that document 
chemical weathering of bedrock parent material 
include Egli et al. (2014) and Rea et al. (2020). On 
many drainage basin hillslopes, however, soils form 
in materials produced mainly by physical weathering 
of bedrock, such as talus and colluvium. In higher 
elevation areas subject to frequent freeze-thaw cycles, 
frost weathering is a key physical weathering process 
(Bierman and Montgomery, 2019). At lower, generally 
warmer elevations where frost weathering is not 
effective, other physical weathering processes are 
important. Recent studies suggest that solar insolation 
may actually play a key role in the development 
and extension of initial fractures (McFadden et al., 
2005; Eppes et al., 2010), accelerated via subcritical 
formation and extension of cracks (Eppes and 
Keanini, 2017). Increases in the spatial extent and 
thickness of talus and colluvium are commonly 
observed in the hillslopes of mountain ranges with 
high relief, given the associated higher annual 
precipitation and lower temperatures, conditions 

that tend to favor an increase in the magnitude of 
physical weathering. 

The character and spatial extent of soils on 
hillslopes are affected by several factors, such as relief, 
rock type, vegetation, climate and local base level. 
Given variability amongst these factors in diverse 
geomorphological settings, hillslopes exhibit different 
forms. For example, some hillslopes are dominated 
by relatively frequent occurrences of debris flows, 
rotational slumps, and other mass movements. In 
many drainage basins where mass movements are 
rare, a very common hillslope form observed is 
characterized by a smooth, curvilinear profile and 
is associated with a continuous mantle of soil and 
vegetation (Fig. B.5).  Gilbert (1880) recognized the 
latter hillslope form as being one that develops in 
effectively wetter and colder climate regimes. These 
conditions are conducive to weathering and slope 
material production sufficient to exceed the rate of 
transport of weathered material on the hillslope. In 
the nearly 150 years since this publication, a large 
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Figure B.4. A cross section (no vertical or horizontal exaggeration) showing a soil toposequence on a transport limited hillslope from a study site 
on the Colorado Plateau in NE Arizona. Soil horizons with depths and textural data for soils located at various hillslope positions are shown in the 
different plots. See text discussion of soil toposequences. After McFadden (2013). 
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Figure B.6. Steep, bedrock dominated “detachment-limited” hillslopes formed on southwest-facing hillslopes formed on the same bedrock and in the 
same area as the hillslopes shown in Figure 6.5. Photograph by Leslie D. McFadden

Figure B.5. Smooth, soil and vegetation mantled “transport limited” hillslopes formed on weakly cemented sandstones of the Dixon Member, 
Tesuque Formation, Santa Fe Group. The hillslopes face to the northeast (hillslope aspect) and the area is located 35 km southwest of Taos, New 
Mexico at an elevation of approximately 2070 m. Photograph by Leslie D. McFadden

body of published research has both confirmed and 
extended Gilbert’s research (e.g., Heimsath et al., 
1997), and these smooth hillslopes are commonly 
referred to as transport-limited hillslopes dominated 
by diffusive transport of slope materials. In 
contrast, typically steeper hillslopes dominated by 
exposure of bedrock and discontinuous weathering 
mantles (including soils) are now often referred 
to as detachment- or weathering-limited hillslopes 
(Fig. B.6) (Bierman and Montgomery, 2019). 
Gilbert noted that such hillslopes are common in 
generally arid climates, and he recognized that in 
these circumstances, the magnitude of weathering 

and production of colluvium and/or soils was not 
sufficient to exceed the rate of hillslope erosion by 
runoff or mass movements (e.g., creep). 

In geomorphically favorable circumstances, where 
colluvium has accumulated in zero order drainage 
basins or where colluvium, sheetwash-derived 
sediment or debris-flow sediment has accumulated 
at base of hillslopes, the soil profiles are often 
generally thicker than those forming in bedrock. 
For example, published detailed NRCS soil maps 
of the higher elevations (8,400 to 10,500 feet) of 
the Sandia Mountains (Hacker, 1977) identified 
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the “Shallow to Deep Soils” of the Kolob-Rock 
Outcrop Association. This association includes large 
areas of exposed bedrock or very thin soils (Rock 
Outcrop, including extragrade “Lithic” subgroups 
with typically thin, weakly developed A-C profiles 
with bedrock at shallow depths) and the thicker 
Kolob soils, many of which occur in thick hillslope 
materials and commonly exhibit B horizons. In the 
Sandia Mountains, these more well developed, thicker 
soils occur in the Alfisol, Mollisol and Inceptisol 
orders. Soils classified in these orders are also 
common in higher elevation settings in the Jemez 
Mountains (e.g., Nyhan et al., 1978) and in the Front 
Ranges in Colorado (Birkeland et al., 2003). Recent 
extensive geomorphological research in glaciated 
and unglaciated basins in the southern San Juan 
Mountains also show that relatively thick soils (some 
exceeding 100 cm) with weakly developed B horizons 
have formed in latest Pleistocene unconsolidated 
morainal till and younger Holocene alluvial deposits 
at elevations between 10000 and 11000 feet. Soils 
formed directly on steep hillslopes, however, exhibit 
thin soils with A-C-Cr profiles (Aldred, 2020). 

Steep hillslopes commonly favor rates of erosion 
that enable only thin soils to form, or entirely 
preclude the development of soils. Additionally, 
the relatively low permeability of bedrock (as 
compared to, for example, gravelly alluvium) favors 
a low infiltration-to-runoff ratio, which also limits 
weathering and soil development. This is especially 
the case in dryland climates. Many other hillslopes 
are not so steep, and thick soils can form on these 
hillslopes. Their development can be attributed to the 
following: (1) the moister climate at higher elevations 
characterized by higher annual precipitation and 
cooler temperatures that favor deeper average depths 
of soil water movement and soil development in 
relatively permeable parent materials; (2) increasing 
vegetation density at higher elevations provides 
canopy cover and a root network that increases 
soil strength and cohesion, which results in 
increased resistance to erosion (see Chapter 4 of this 
publication); (3) the entrapment and incorporation of 
eolian dust in soils that produces net soil accretion;  
(4) incision of gullies into colluvial deposits and 
debris fan-aprons temporarily isolates soils from 
subsequent runoff and erosion; (5) colluvial materials, 
commonly far more permeable than bedrock, 

favor deeper soil water movement and, ultimately, 
development of thicker soils; and (6) thicker forest 
soils with thick O, A, Bw and C horizons often have 
relatively high infiltration rates and generally low 
runoff (e.g., Martin and Moody, 2001). In addition, 
the presence of thick soils that retain soil water 
provide insulation that increases soil water retention 
in deeper subsurface horizons. At the soil-bedrock 
contact, these circumstances have been proposed to 
favor increased chemical weathering of bedrock. As is 
described in Chapter 4, the presence of a continuous 
soil mantle is also conducive to the colonization of 
soil-stabilizing herbaceous plants, such as grass.

The body of soil geomorphological research 
conducted on drainage basin hillslopes in 
New Mexico is relatively limited; however, over two 
dozen papers in this area have been published in only 
the last twenty-five years (e.g., Davenport et al., 1998; 
Phillips et al., 1998), presumably largely reflecting 
the presence of a large national laboratory (LANL) 
and the establishment of the Santa Catalina-Jemez 
Mountains Critical Zone Observatory (CZO) in 
the Jemez Mountains (e.g., Olyphant et al., 2016). 
As is the case in other CZOs throughout the United 
States and also many other studies of hillslope 
geomorphology, one conceptual approach that has 
been adopted in the study of soil component of 
the critical zone is referred to as steady-state soil 
production (McFadden, 2013; Richter et al., 2020). 
The recent development and refinement of soil 
production represents an important extension of the 
definition of soil geomorphology as initially proposed 
by McFadden and Knuepfer (1990). The derivation of 
the soil production function (spf) that combines the 
hillslope sediment flux equation with the conservation 
of mass for a column of soil requires that the spf is 
essentially applicable only on soil mantled hillslopes 
with convex-up form and characterized by exclusively 
diffusive slope transport (i.e., abiotic and biotic creep) 
(Heimsath et al., 1997). In addition to the application 
of the steady-state spf in soil geomorphological 
research of hillslopes in the Jemez Mountains, this 
approach has been utilized in a few studies in other 
New Mexico mountains, including a study focusing 
on biochemical weathering processes in bedrock (Rea 
et al., 2020) and in studies of drainage basin patterns 
on hillslopes formed on uplifted basin fill sediments in 
the semiarid region west of Socorro (Gutiérrez-Jurado 
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and Vivoni, 2013). As will be described below, 
however, recent studies of soils and hillslopes in some 
semiarid settings in New Mexico and elsewhere in the 
southwestern U.S. (Persico et al., 2011; McFadden, 
2013; McAuliffe et al., 2014) show that steady state 
has been disrupted and/or that gullying and rilling 
(advective sediment transport processes) have played 
important roles with respect to erosion and sediment 
transport. In addition, soil-forming processes other 
than “production” of soil via bedrock weathering 
affect hillslope soils, including variable eolian 
sediment flux and the development of mechanically 
strong petrocalcic horizons not subject to creep. These 
geomorphic processes somewhat limit the usefulness 
of the conceptual framework provided by the spf in 
study of many landscapes subject to climate and other 
environmental changes.  

Soil Chronosequence and Other Geomorphic 
Studies

Ultimately, over longer time spans, hillslopes 
must inevitably retreat, thereby ultimately limiting 
periods of geomorphic stability that enable sustained 
soil development and the overall magnitude of soil 
development. Processes of runoff, erosion, interflow, 
locally intensive bioturbation, and the difficulty of 
determining the ages of soil parent materials on 
hillslopes greatly complicate interpretation of strongly 
topographically dependent trends in soil-forming 
processes. However, studies of soil formation on 
the basis of soil chronosequence studies can in 
appropriate circumstances be used to evaluate some 
important aspects of soil development on hillslopes. 

Some of the most well regarded soil 
chronosequence studies have been conducted in 
the landscapes surrounding Las Cruces in southern 
New Mexico, known as the Desert Project (Holliday 
et al., 2001). Desert Project research shows that many 
soil-forming processes are strongly time dependent 
(e.g., the development of pedogenic carbonate 
morphology) (Gile et al., 1981). The availability 
of numerical age dates for different soil parent 
materials or soil materials provided the basis for 
determining rates of soil development in this dryland 
region. Since these studies, new geochronological 
methods have been developed that provide numerical 
age information to help determine rates of soil 

development (e.g., Phillips et al., 1998). One of the 
most significant contributions of Desert Project 
research, however, was the recognition of the role 
of dust as a principal source of pedogenic calcium 
carbonate, rather than the production of dissolved 
calcium via chemical weathering of aluminosilicate 
minerals in the initial soil parent materials. 

Other soil chronosequence studies in New Mexico 
also revealed key time-dependent soil properties 
including the important role the incorporation 
and pedogenic alteration of dust plays in the 
development of soil properties in addition to soil 
carbonate accumulation. Many other studies of soil 
chronosequences elsewhere in the southwest show 
similar results (c.f., Birkeland, 1999). Other studies 
that demonstrate the significant impact of dust 
entrapment and accumulation on soil formation in 
New Mexico and adjacent regions include studies of 
soils formed on volcanic flow surfaces (Eppes and 
Harrison, 1999; Van der Hoven and Quade, 2002; 
McFadden, 2013), and on eolian landforms (Wells et 
al., 1990; Reheis et al., 2005; Ellwein et al., 2018).

The entrapment and accumulation of dust 
in dryland soils not only plays a primary role 
in pedogenic carbonate accumulation, but also 
ultimately plays a fundamental role in the mode 
of soil profile development in sparsely vegetated 
landscapes (McFadden, 2013). In contrast to 
soil profile development in more humid climates 
(Fig. B.7a) (dominated by chemical weathering and 
net mass loss below the soil-atmosphere interface), 
dryland soil development is commonly characterized 
by the net addition of eolian sediment via cyclic soil 
inflation and accretion (Fig. B.7b). The formation and 
evolution of soils of desert pavements that dominate 
the landscapes of many very hot and arid regions 
is attributable to this mode of profile development; 
however, this mode of soil development can also be 
recognized in the soils of the semiarid foothills of 
the Sandia Mountains, as described below (Persico 
et al., 2011). A recently published study of lacustrine 
sediments from a site in central Arizona (Staley et 
al., 2021) shows that eolian dust accumulation has 
been occurring during much of the last 1.3 Ma, 
demonstrating that this process likely has strongly 
influenced soil development in drylands of the 
southwest throughout much of the Quaternary. 
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Figure B.7a. Time dependent development of the classical A/B/C soil profile developed in the 19th century by Russian soil scientists and 
ultimately adopted as a profile model by scientists worldwide in the 20th century. The lower case letters “t” and “k” indicated the presence 
of soil clay and calcium carbonate in the associated soil horizons. After Figure 1a from McFadden (2013).

Figure B.7b. Time dependent development of a “cumulative” soil profile dominated by net accretion of slowly accumulating and 
pedogenically modified sediment. The light-brown irregularly shaped objects represent coarse fragments or gravel that are maintained as 
the surface during development of the soil. This example of a cumulative soil represents development of a dryland soil below a “desert 
pavement”; “R” represents fresh and/or slightly weathered bedrock. After Figure 1b, McFadden (2013). 
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Contributions of Soil Geomorphological 
Research to the Evaluation of Rates and 
Processes of Pedogenesis on Hillslopes in 
New Mexico

As noted above, the geomorphic and hydrological 
processes that characterize hillslope environments 
(e.g., interflow, soil creep) as compared to those 
on stable geomorphic surfaces appropriate for soil 
chronosequence studies complicate the interpretation 
of soil formed on hillslopes (Birkeland, 1999; 
McFadden, 2013). Certain hillslopes, however, 
provide more favorable circumstances. Glacial 
moraines found in mountainous regions subject to 
alpine glaciation are a good example. Unlike most 
hillslopes formed on bedrock, the hillslopes of a 
moraine initially have the same age, eliminating 
“T” as a soil state factor. Moreover, in some cases, 
morainal sediments can be dated using radiocarbon 
or cosmogenic surface age methodologies. The 
relatively limited relief, common parent material 
and vegetation of moraines enables development 
of soil toposequences. On some hillslopes formed 
on bedrock, dendrochronological methods and 
cosmogenic surface age dating also can be used in 
the study of hillslope soils and geomorphic processes 
(McAuliffe et al., 2006; Scuderi et al., 2008; 
McAuliffe et al., 2014).

Studies of soils of glacial moraine toposequences 
(Muhs and Maat, 1993; Birkeland, 1999; 
Birkeland et al., 2003) in the Rocky Mountains 
of central Colorado show that the entrapment 
and incorporation of dust plays a key role in soil 
development, despite the moist conditions and 
development of organic matter-rich O and A horizons. 
Soils in the southern San Juan Mountains formed in 
latest Pleistocene moraines and post-glacial colluvium 
and alluvium with B horizons are also strongly 
influenced by eolian dust (Aldred, 2020). Late 
Pleistocene soils formed in tundra covered soils on 
bedrock at elevations up to 12,000 feet in the Uinta 
Mountains with A-Bw-C profile development are 
also dominated by dust accumulation. These studies 
also demonstrate that soils on latest Pleistocene 
moraines with A-B-C profile development require at 
least several thousand years to form, a conclusion 
consistent with that of the numerous aforementioned 
soil chronosequence studies conducted in 
New Mexico and adjacent regions. 

With the exception of the Jemez Mountains 
region, to date there have been relatively few soil 
geomorphic studies in high elevation mountains 
in New Mexico. For example, Google Scholar 
for publications in this area of research turned 
up between 0 and a maximum of 3 papers (for a 
given mountain range) over the last few decades 
based on studies in the Sangre de Cristo, Sandia, 
Sacramento, Black Range, and Mogollon Mountains. 
Although their focus is not on the development of 
soil properties, at least some of the published studies, 
such as the studies of Gierke et al. (2016) and Rea et 
al. (2020) in the Sacramento Mountains and Persico 
et al. (2011) in the Sandia Mountains foothills 
acknowledge the significance of dust accumulation in 
development of soils in their study sites.

The study by Persico et al. (2011) in the 
foothills of the Sandia Mountains provides another 
example of the important role rock type plays in 
soil- and hillslope-forming processes. The Sandias 
are composed mainly of the Sandia Granite and are 
characterized by bedrock-dominated (weathering-
limited) “core-stone” hillslopes, which consist of 
bare, fractured, ellipsoidal blocks of granite, as 
illustrated in the lower left corner of Fig. 5.6. Core-
stone hillslopes have small patches of thin, weakly 
developed soils between the large core-stones. Where 
small tabular bodies (geologists call these features 
“dikes”) of a rock type called “aplite” (a fine-grained, 
granite-like igneous rock) occur in the granite, the 
aplite breaks down to large blocks that accumulate 
on hillslopes below the dikes. The blocks efficiently 
entrap windblown dust, a process that eventually 
causes the formation of a thick, well-developed 
soil (Figure B.8) (McFadden, 2013). These smooth, 
soil-mantled hillslopes (Figure 5.6) have been stable 
for tens of thousands of years, but ongoing shifts 
in climate will likely strip away the soil. As noted 
above, the numerous studies in the Jemez Mountains 
provide important contributions to the understanding 
of the role played by soils in the critical zone. Several 
of these studies also focus on soil hydrology, and 
in particular the impacts of wildfire on surface soil 
horizon alteration and erosion potential (e.g., Martin 
and Moody, 2001) (see Chapters 4 and 6). Employing 
“constitutive mass balance” analysis of a strongly 
developed soil atop the Pajarito Plateau, Eberly et al. 
(1996) strongly suggest that dust accumulation has 
influenced the development of soils on the hillslopes 
of the Jemez Mountains and other mountain ranges 
elsewhere in the southwest United States. 
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Figure B.8. Changes in particle size and soil carbonate concentrations 
in a thick soil on an “aplite” hillslope located in the foothills of the 
Sandia Mountains, New Mexico. The graph shows that soil-forming 
processes over tens of thousands of years have caused the 
accumulation of a great deal of clay and silt in the soil “B” horizon, 
most of which is derived from windblown dust. Only small patches of 
much thinner and weakly developed soils are found on the core-stone 
hills. Development of such soils are responsible for the emergence 
of smooth, curvilinear hillslopes (see text). Roman numerals signify 
depths at which samples for optical luminescence studies were taken. 
Modified after figure 8 in Persico et al. (2011). 
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saturation vapor pressure (the “holding capacity” 
of the air). This statement is equivalent to noting 
that most of the time the relative humidity (which is 
the actual vapor content expressed as a percentage 
of the saturation value plotted in Fig. C.1) is 
considerably less than 100%. On dry summer days in 
New Mexico, the relative humidity can be as low as 
5%; on these days the temperature is typically very 
hot, but there just is not much water vapor in the 
air. For purposes of assessing future rare occurrences 
of extremely high precipitation, however, the huge 
increase in saturation vapor pressure at temperatures 
near 40°C in Fig. C.1 provides a compelling reason to 
expect that the most extreme precipitation events will 
be more intense in a warmer climate.

The Clausius-Clapeyron Relationship

𝑙𝑙𝑙𝑙 (𝑃𝑃1
𝑃𝑃2

) =
𝛥𝛥𝛥𝛥𝑣𝑣𝑣𝑣𝑣𝑣

𝑅𝑅 ( 1
𝑇𝑇2

− 1
𝑇𝑇1

) 

 

Where

• P1 & P2 are the vapor pressure of water at 
temperatures T1 & T2

• ΔHvap is the Enthalpy (Heat) of Vaporization 
of water (40.7 kJ/mol)

• R is the universal gas 
constant (8.314 J/(mol °K))

This relationship, plotted in Figure C.1, shows 
that a slight increase in temperature results in a 
large increase in atmospheric water content at 
warm temperatures.  For example, increasing 
air temperature by only 1°C (1.8°F) allows the 
atmosphere to retain approximately 7% more water 
vapor.  Consequently, increased temperature allows 
for the potential for much-increased water content 
in the atmosphere.  This relationship directly implies 
the potential for increased precipitation from rainfall 
events as temperature increases.

Of course, most of the time the actual vapor 
content of the atmosphere is much less than the 

Figure C.1.  Relationship between saturation water vapor pressure 
(over a flat surface of liquid water) and air temperature.

M ost discussions of the effects of a warming climate 
on extreme precipitation start with a presentation 

of the Clausius-Clapeyron equation, which describes 
the saturation vapor pressure of water as a function 
of temperature (Donat et al., 2016; Lu et al., 2018; 
Lynker Technologies, 2019; Meredith et al., 2019; 
Kappel et al., 2020; Kunkel et al., 2020; Tabari, 2020; 
Fowler et al., 2021). The saturation vapor pressure of 
water is proportional to the maximum water content 
that the atmosphere can hold.



171

  A P P E N D I X  R E F E R E M C E S  C I T E D

A P P E N D I X  R E F E R E N C E S  C I T E D

Eberly, P., McFadden, L., and Watt, P., 1996, Eolian dust as 
a factor in soil development on the Pajarito Plateau, 
Northern New Mexico, in Goff, F., Kues, B. S., Rogers, 
M. A., McFadden, L. S., and Gardner, J. N., eds., New 
Mexico Geological Society, Guidebook 47, p. 383-
389, https://nmgs.nmt.edu/publications/guidebooks/
downloads/47/47_p0383_p0389.pdf.

Egli, M., Dahms, D., and Norton, K., 2014, Soil formation 
rates on silicate parent material in alpine environments: 
Different approaches–different results?: Geoderma, 
v. 213, p. 320-333, https://doi.org/10.1016/j.
geoderma.2013.08.016.

Ellwein, A. L., McFadden, L. D., McAuliffe, J. A., and 
Mahan, S. A., 2018, Late Quaternary soil development 
enhances aeolian landform stability, Moenkopi Plateau, 
Southern Colorado Plateau, USA: Geosciences, v. 8, no. 
5, p. 146, https://doi.org/10.3390/geosciences8050146.

Eppes, M., Ld, M., Wegmann, K., and Scuderi, L., 2010, 
Cracks in desert pavement rocks: Further insights 
into mechanical weathering by directional insolation: 
Geomorphology, v. 123, p. 97-108, https://doi.
org/10.1016/j.geomorph.2010.07.003.

Eppes, M. C., and Harrison, J. B. J., 1999, Spatial 
variability of soils developing on basalt flows in 
the Potrillo volcanic field, southern New Mexico: 
prelude to a chronosequence study: Earth Surface 
Processes and Landforms, v. 24, no. 11, p. 
1009-1024, https://doi.org/10.1002/(SICI)1096-
9837(199910)24:11<1009::AID-ESP26>3.0.CO;2-B.

Eppes, M. C., and Keanini, R., 2017, Mechanical 
weathering and rock erosion by climate-dependent 
subcritical cracking: Reviews of Geophysics, v. 55, no. 
2, p. 470-508, https://doi.org/10.1002/2017RG000557.

Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, 
R. P., Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Do, 
H. X., et al., 2021, Anthropogenic intensification of 
short-duration rainfall extremes: Nature Reviews Earth 
& Environment, v. 2, no. 2, p. 107-122, https://doi.
org/10.1038/s43017-020-00128-6.

Gierke, C., Newton, B. T., and Phillips, F. M., 2016, 
Soil-water dynamics and tree water uptake in the 
Sacramento Mountains of New Mexico (USA): a stable 
isotope study: Hydrogeology journal, v. 2016 v.24 
no.4, no. no. 4, p. pp. 805-818, https://doi.org/10.1007/
s10040-016-1403-1.

Gilbert, G., 1880, Geology of the Henry Mountains U.S. 
Geological Survey, USGS Report 170 p.,  https://doi.
org/10.3133/70039916.

Aldred, J. L., 2020, Post-last glacial maximum landscape 
evolution of the Upper Conejos River Basin, San 
Juan Mountains, CO, USA,  Ph.D. dissertation: The 
University of North Carolina at Charlotte, 152 p.

Allen, C. D., and Breshears, D. D., 1998, Drought-induced 
shift of a forest–woodland ecotone: Rapid landscape 
response to climate variation: Proceedings of the 
National Academy of Sciences, v. 95, no. 25, p. 14839, 
http://www.pnas.org/content/95/25/14839.abstract.

Bierman, P., and Montgomery, D., 2019, Key concepts in 
geomorphology, New York, NY, W.H. Freeman and 
Company, 592 p, https://nmt.on.worldcat.org/v2/
oclc/1236202116.

Birkeland, P. W., 1999, Soils and geomorphology, Oxford 
University Press, 430 p, https://doi.org/10.1002/
esp.242.

Birkeland, P. W., Shroba, R. R., Burns, S. F., Price, A. 
B., and Tonkin, P. J., 2003, Integrating soils and 
geomorphology in mountains - An example from the 
Front Range of Colorado: Geomorphology, v. 55, 
no. 1, p. 329-344, https://doi.org/10.1016/S0169-
555X(03)00148-X.

Davenport, D. W., Breshears, D. D., Wilcox, B. P., and Allen, 
C. D., 1998, Sustainability of pinon-juniper ecosystems-
-A unifying perspective of soil erosion thresholds: 
Rangeland Ecology & Management/Journal of Range 
Management Archives, v. 51, no. 2, p. 231-240, https://
doi.org/10.2307/4003212.

Döll, P., 2009, Vulnerability to the impact of climate change 
on renewable groundwater resources: A global-scale 
assessment: Environmental Research Letters, v. 4, no. 3, 
p. 13, https://doi.org/10.1088/1748-9326/4/3/035006.

Döll, P., and Fiedler, K., 2008, Global-scale modeling of 
groundwater recharge: Hydrology and Earth System 
Sciences, v. 12, p. 863-885, https://doi.org/10.5194/
hess-12-863-2008.

Döll, P., Kaspar, F., and Lehner, B., 2003, A global 
hydrological model for deriving water availability 
indicators: Model tuning and validation: Journal of 
Hydrology, v. 270, p. 105-134, https://doi.org/10.1016/
S0022-1694(02)00283-4.

Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. 
A., and Maher, N., 2016, More extreme precipitation 
in the world’s dry and wet regions: Nature Climate 
Change, v. 6, no. 5, p. 508-513, https://doi.org/10.1038/
nclimate2941.

https://nmgs.nmt.edu/publications/guidebooks/downloads/47/47_p0383_p0389.pdf
https://nmgs.nmt.edu/publications/guidebooks/downloads/47/47_p0383_p0389.pdf
https://doi.org/10.1016/j.geoderma.2013.08.016
https://doi.org/10.1016/j.geoderma.2013.08.016
https://doi.org/10.3390/geosciences8050146
https://doi.org/10.1016/j.geomorph.2010.07.003
https://doi.org/10.1016/j.geomorph.2010.07.003
https://doi.org/10.1002/(SICI)1096-9837(199910)24:11%3c1009::AID-ESP26%3e3.0.CO;2-B
https://doi.org/10.1002/(SICI)1096-9837(199910)24:11%3c1009::AID-ESP26%3e3.0.CO;2-B
https://doi.org/10.1002/2017RG000557
https://doi.org/10.1038/s43017-020-00128-6
https://doi.org/10.1038/s43017-020-00128-6
https://doi.org/10.1007/s10040-016-1403-1
https://doi.org/10.1007/s10040-016-1403-1
https://doi.org/10.3133/70039916
https://doi.org/10.3133/70039916
http://www.pnas.org/content/95/25/14839.abstract
https://nmt.on.worldcat.org/v2/oclc/1236202116
https://nmt.on.worldcat.org/v2/oclc/1236202116
https://doi.org/10.1002/esp.242
https://doi.org/10.1002/esp.242
https://doi.org/10.1016/S0169-555X(03)00148-X
https://doi.org/10.1016/S0169-555X(03)00148-X
https://doi.org/10.2307/4003212
https://doi.org/10.2307/4003212
https://doi.org/10.1088/1748-9326/4/3/035006
https://doi.org/10.5194/hess-12-863-2008
https://doi.org/10.5194/hess-12-863-2008
https://doi.org/10.1016/S0022-1694(02)00283-4
https://doi.org/10.1016/S0022-1694(02)00283-4
https://doi.org/10.1038/nclimate2941
https://doi.org/10.1038/nclimate2941


N E W  M E X I C O  B U R E A U  O F  G E O L O G Y  A N D  M I N E R A L  R E S O U R C E S   

172

Gile, L., Hawley, J., and Grossman, R., 1981, Soils and 
geomorphology in the Basin and Range area of 
Southern New Mexico: Guidebook to the Desert 
Project, New Mexico Bureau of Mines and Mineral 
Resources, Memoir 39, 222 p., https://geoinfo.nmt.edu/
publications/monographs/memoirs/39/.

Graham, R., Rossi, A., and Hubbert, K., 2010, Rock to 
regolith conversion, producing hospitable substrates 
for terrestrial ecosystems, GSA Today, v. 20, p. 4–9, 
https://doi.org/10.1130/GSAT57A.1.

Gutiérrez-Jurado, H. A., and Vivoni, E. R., 2013, 
Ecogeomorphic expressions of an aspect-controlled 
semiarid basin: II. Topographic and vegetation controls 
on solar irradiance: Ecohydrology, v. 6, no. 1, p. 24-37, 
https://doi.org/10.1002/eco.1263.

Hacker, L. W., 1977, Soil survey of Bernalillo County and 
parts of Sandoval and Valencia Counties, New Mexico: 
United States Department of Agriculture and United 
States Department of the Interior and New Mexico 
Agricultural Experiment Station, https://www.nrcs.
usda.gov/Internet/FSE_MANUSCRIPTS/new_mexico/
NM600/0/bernalillo.pdf.

Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and 
Finkel, R. C., 1997, The soil production function and 
landscape equilibrium: Nature, v. 388, no. 6640, p. 
358-361, https://doi.org/10.1038/41056.

Holliday, V. T., McFadden, L. D., Bettis, E. A., and 
Birkeland, P. W., 2001, The soil survey and soil 
geomorphology, in Helms, D., ed., History of the 
National Cooperative Soil Survey, Iowa State 
University Press.

Jenny, H., 1941, Factors of soil formation: A system of 
quantitative pedology: New York, McGraw-Hill.

Kappel, B., Hultstrand, D., Steinhilber, K., and Rodel, J., 
2020, Climate change and PMP: Are these storms 
changing? : Journal of Dam Safety, v. 17, no. 3, p. 
16, https://www.appliedweatherassociates.com/
uploads/1/3/8/1/13810758/17.3_kappel_climate_
change_and_pmp_with_cover.pdf.

Ketchum, D. G., 2016, High-resolution estimation of 
groundwater recharge for the entire state of New 
Mexico using a soil-water balance model,  M.S. thesis: 
New Mexico Institute of Mining and Technology, 
Socorro, New Mexico, 142 p, https://nmt.on.worldcat.
org/v2/oclc/990144964.

Kunkel, K. E., Stevens, S. E., Stevens, L. E., and Karl, T. R., 
2020, Observed climatological relationships of extreme 
daily precipitation events with precipitable water 
and vertical velocity in the contiguous United States: 
Geophysical Research Letters, v. 47, no. 12, https://doi.
org/10.1029/2019gl086721.

Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, 
S. J., 1994, A simple hydrologically based model 
of land surface water and energy fluxes for general 
circulation models: Journal of Geophysical Research: 
Atmospheres, v. 99, no. D7, p. 14415-14428, https://
doi.org/10.1029/94JD00483.

Lu, J., Xue, D., Gao, Y., Chen, G., Leung, L. R., and 
Staten, P., 2018, Enhanced hydrological extremes 
in the Western United States under global warming 
through the lens of water vapor wave activity: Climate 
and Atmospheric Science, v. 1, no. 1, https://doi.
org/10.1038/s41612-018-0017-9.

Lynker Technologies, L., 2019, Projecting rainfall intensity 
duration frequency curves under climate change: 
Colorado Water Conservation Board, https://waterinfo.
org/wp-content/uploads/2020/02/CWCB-IDF-Curve-
Projection-Paper-Final.pdf.

Martin, D. A., and Moody, J. A., 2001, Comparison of soil 
infiltration rates in burned and unburned mountainous 
watersheds: Hydrological Processes, v. 15, no. 15, p. 
2893-2903, https://doi.org/10.1002/hyp.380.

Maxwell, R. M., and Miller, N. L., 2005, Development of a 
coupled land surface and groundwater model: Journal 
of Hydrometeorology, v. 6, no. 3, p. 233-247, https://
doi.org/10.1175/JHM422.1.

McAuliffe, J. R., McFadden, L. D., Roberts, L. M., 
Wawrzyniec, T. F., Scuderi, L. A., Meyer, G. A., and 
King, M. P., 2014, Non-equilibrium hillslope dynamics 
and irreversible landscape changes at a shifting Pinyon–
Juniper woodland ecotone: Global and Planetary 
Change, v. 122, p. 1-13, https://doi.org/10.1016/j.
gloplacha.2014.07.008.

McAuliffe, J. R., Scuderi, L. A., and McFadden, L. D., 2006, 
Tree-ring record of hillslope erosion and valley floor 
dynamics: Landscape responses to climate variation 
during the last 400yr in the Colorado Plateau, 
Northeastern Arizona: Global and Planetary Change, 
v. 50, no. 3, p. 184-201, https://doi.org/10.1016/j.
gloplacha.2005.12.003.

McFadden, L., Eppes, M., Gillespie, A., and Hallet, B., 
2005, Physical weathering in arid landscape due to 
diurnal variation in the direction of solar heating: 
Geological Society of America Bulletin v. 117, https://
doi.org/10.1130/B25508.1.

McFadden, L. D., 2013, Strongly dust-influenced soils 
and what they tell us about landscape dynamics 
in vegetated aridlands of the Southwestern United 
States, in Bickford, M. E., ed., In The Web of 
Geological Sciences: Advances, Impacts, and 
Interactions, Volume 500, p. 501–532, https://doi.
org/10.1130/2013.2500(15).

https://geoinfo.nmt.edu/publications/monographs/memoirs/39/
https://geoinfo.nmt.edu/publications/monographs/memoirs/39/
https://doi.org/10.1130/GSAT57A.1
https://doi.org/10.1002/eco.1263
https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/new_mexico/NM600/0/bernalillo.pdf
https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/new_mexico/NM600/0/bernalillo.pdf
https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/new_mexico/NM600/0/bernalillo.pdf
https://doi.org/10.1038/41056
https://www.appliedweatherassociates.com/uploads/1/3/8/1/13810758/17.3_kappel_climate_change_and_pmp_with_cover.pdf
https://www.appliedweatherassociates.com/uploads/1/3/8/1/13810758/17.3_kappel_climate_change_and_pmp_with_cover.pdf
https://www.appliedweatherassociates.com/uploads/1/3/8/1/13810758/17.3_kappel_climate_change_and_pmp_with_cover.pdf
https://nmt.on.worldcat.org/v2/oclc/990144964
https://nmt.on.worldcat.org/v2/oclc/990144964
https://doi.org/10.1029/2019gl086721
https://doi.org/10.1029/2019gl086721
https://doi.org/10.1029/94JD00483
https://doi.org/10.1029/94JD00483
https://doi.org/10.1038/s41612-018-0017-9
https://doi.org/10.1038/s41612-018-0017-9
https://waterinfo.org/wp-content/uploads/2020/02/CWCB-IDF-Curve-Projection-Paper-Final.pdf
https://waterinfo.org/wp-content/uploads/2020/02/CWCB-IDF-Curve-Projection-Paper-Final.pdf
https://waterinfo.org/wp-content/uploads/2020/02/CWCB-IDF-Curve-Projection-Paper-Final.pdf
https://doi.org/10.1002/hyp.380
https://doi.org/10.1175/JHM422.1
https://doi.org/10.1175/JHM422.1
https://doi.org/10.1016/j.gloplacha.2014.07.008
https://doi.org/10.1016/j.gloplacha.2014.07.008
https://doi.org/10.1016/j.gloplacha.2005.12.003
https://doi.org/10.1016/j.gloplacha.2005.12.003
https://doi.org/10.1130/B25508.1
https://doi.org/10.1130/B25508.1
https://doi.org/10.1130/2013.2500(15)
https://doi.org/10.1130/2013.2500(15)


173

  A P P E N D I X  R E F E R E M C E S  C I T E D

McFadden, L. D., and Knuepfer, P. L. K., 1990, Soil 
geomorphology: the linkage of pedology and surficial 
processes: Geomorphology, v. 3, no. 3, p. 197-205, 
https://doi.org/10.1016/0169-555X(90)90003-9.

Meredith, E. P., Ulbrich, U., and Rust, H. W., 2019, 
The diurnal nature of future extreme precipitation 
intensification: Geophysical Research Letters, 
v. 46, no. 13, p. 7680-7689, https://doi.
org/10.1029/2019gl082385. 

Muhs, D., and Maat, P., 1993, The potential response of 
eolian sands to greenhouse warming and precipitation 
reduction on the Great Plains of the USA: Journal of 
Arid Environments, v. 25, no. 4, p. 351-361, https://doi.
org/10.1006/jare.1993.1068.

Nyhan, J., Hacker, L., Calhoun, T., and Young, D., 
1978, Soil survey of Los Alamos County: Los 
Alamos Scientific Lab LA-6779-MS, 102 p., https://
hwbdocuments.env.nm.gov/Los%20Alamos%20
National%20Labs/TA%2054/11468.pdf.

Olyphant, J., Pelletier, J. D., and Johnson, R., 2016, 
Topographic correlations with soil and regolith 
thickness from shallow-seismic refraction constraints 
across upland hillslopes in the Valles Caldera, New 
Mexico: Earth Surface Processes and Landforms, v. 
41, no. 12, p. 1684-1696, https://doi.org/10.1002/
esp.3941.

Parrish, G. E. L., 2020, Parameterizing total available 
water for New Mexico soils,  M.S. thesis: New Mexico 
Insitute of Mining and Technology, 147 p.

Persico, L., McFadden, L., Frechette, J., and Meyer, 
G., 2011, Rock type and dust influx control 
accretionary soil development on hillslopes in the 
Sandia Mountains, New Mexico, USA: Quaternary 
Research v. 76, p. 411-416, https://doi.org/10.1016/j.
yqres.2011.08.005.

Peterson, K., Hanson, A., Roach, J. L., Randall, J., and 
Thomson, B., 2019, A dynamic statewide water 
budget for New Mexico: Phase III ‒ Future scenario 
implementation: New Mexico Water Resources 
Research Institute, Technical Completion Report No. 
380, 200 p., https://nmwrri.nmsu.edu/tr-380/.

Phillips, W. M., McDonald, E. V., Reneau, S. L., and Jane, 
P., 1998, Dating soils and alluvium with cosmogenic 
21Ne depth profiles: Case studies from the Pajarito 
Plateau, New Mexico, USA: Earth and Planetary 
Science Letters, v. 160, no. 1, p. 209-223, https://doi.
org/10.1016/S0012-821X(98)00076-4.

Rea, P., Ma, L., Gill, T. E., Gardea-Torresdey, J., Tamez, C., 
and Jin, L., 2020, Tracing gypsiferous White Sands 
aerosols in the shallow critical zone in the Northern 
Sacramento Mountains, New Mexico using Sr/Ca and 
87Sr/86Sr ratios: Geoderma, v. 372, p. 21, https://doi.
org/10.1016/j.geoderma.2020.114387.

Reheis, M. C., Reynolds, R. L., Goldstein, H., Roberts, 
H. M., Yount, J. C., Axford, Y., Cummings, L. S., and 
Shearin, N., 2005, Late Quaternary eolian and alluvial 
response to paleoclimate, Canyonlands, Southeastern 
Utah: Geological Society of America Bulletin, v. 
117, no. 7-8, p. 1051-1069, https://doi.org/10.1130/
B25631.1.

Richter, D. D., Eppes, M.-C., Austin, J. C., Bacon, A. 
R., Billings, S. A., Brecheisen, Z., Ferguson, T. A., 
Markewitz, D., Pachon, J., Schroeder, P. A., et al., 2020, 
Soil production and the soil geomorphology legacy of 
Grove Karl Gilbert: Soil Science Society of America 
Journal, v. 84, no. 1, p. 1-20, https://doi.org/10.1002/
saj2.20030.

Scuderi, L. A., McFadden, L. D., and McAuliffe, J. R., 2008, 
Dendrogeomorphically derived slope response to 
decadal and centennial scale climate variability: Black 
Mesa, Arizona, USA: Natural Hazards Earth Systems 
Science, v. 8, no. 4, p. 869-880, https://doi.org/10.5194/
nhess-8-869-2008.

Staley, S. E., Fawcett, P. J., Anderson, R. S., and Jiménez-
Moreno, G., 2021, Sedimentology and stratigraphy 
of core STL14: An Early Pleistocene-to-present 
paleoclimate archive for the American Southwest from 
Stoneman Lake, Arizona, USA https://digitalrepository.
unm.edu/eps_etds/249/ (in press).

Tabari, H., 2020, Climate change impact on flood and 
extreme precipitation increases with water availability: 
Scientific Reports, v. 10, no. 1, https://doi.org/10.1038/
s41598-020-70816-2.

Natural resources conservation service: Usda.gov: https://
www.nrcs.usda.gov/wps/portal/nrcs/site/national/
home/. (accessed 2021)

Van der Hoven, S. J., and Quade, J., 2002, Tracing spatial 
and temporal variations in the sources of calcium 
in pedogenic carbonates in a semiarid environment: 
Geoderma, v. 108, no. 3, p. 259-276, https://doi.
org/10.1016/S0016-7061(02)00134-9.

Wells, S. G., McFadden, L. D., and Schultz, J. D., 1990, 
Eolian landscape evolution and soil formation in the 
Chaco Dune Field, Southern Colorado Plateau, New 
Mexico: Geomorphology, v. 3, no. 3, p. 517-546, 
https://doi.org/10.1016/0169-555X(90)90019-M.

Xu, F., 2018, Estimation of focused recharge for New 
Mexico using a soil-water-balance model: PyRANA,  
M.S. thesis: New Mexico Institute of Mining & 
Technology, 75 p.

https://doi.org/10.1016/0169-555X(90)90003-9
https://doi.org/10.1029/2019gl082385
https://doi.org/10.1029/2019gl082385
https://doi.org/10.1006/jare.1993.1068
https://doi.org/10.1006/jare.1993.1068
https://hwbdocuments.env.nm.gov/Los%20Alamos%20National%20Labs/TA%2054/11468.pdf
https://hwbdocuments.env.nm.gov/Los%20Alamos%20National%20Labs/TA%2054/11468.pdf
https://hwbdocuments.env.nm.gov/Los%20Alamos%20National%20Labs/TA%2054/11468.pdf
https://doi.org/10.1002/esp.3941
https://doi.org/10.1002/esp.3941
https://doi.org/10.1016/j.yqres.2011.08.005
https://doi.org/10.1016/j.yqres.2011.08.005
https://nmwrri.nmsu.edu/tr-380/
https://doi.org/10.1016/S0012-821X(98)00076-4
https://doi.org/10.1016/S0012-821X(98)00076-4
https://doi.org/10.1016/j.geoderma.2020.114387
https://doi.org/10.1016/j.geoderma.2020.114387
https://doi.org/10.1130/B25631.1
https://doi.org/10.1130/B25631.1
https://doi.org/10.1002/saj2.20030
https://doi.org/10.1002/saj2.20030
https://doi.org/10.5194/nhess-8-869-2008
https://doi.org/10.5194/nhess-8-869-2008
https://digitalrepository.unm.edu/eps_etds/249/
https://digitalrepository.unm.edu/eps_etds/249/
https://doi.org/10.1038/s41598-020-70816-2
https://doi.org/10.1038/s41598-020-70816-2
https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/
https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/
https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/
https://doi.org/10.1016/S0016-7061(02)00134-9
https://doi.org/10.1016/S0016-7061(02)00134-9
https://doi.org/10.1016/0169-555X(90)90019-M


174

New Mexico Bureau of Geology and Mineral Resources
A Research Division of 

New Mexico Institute of Mining and Technology

Dr. Stephen G. Wells
President, New Mexico Tech 

Dr. Nelia W. Dunbar
Director and State Geologist, 

New Mexico Bureau of Geology and Mineral Resources 

801 Leroy Place  
Socorro, New Mexico 87801-4750 

(575) 835-5490

1015 Tijeras Avenue NW, Suite 200 
Albuquerque, New Mexico 87102-3994 

(505) 366-2533 

BOARD OF REGENTS 
Ex Officio 

Michelle Lujan Grisham 
Governor of New Mexico 

Stephanie Rodriguez 
Cabinet Secretary of Higher Education 

Appointed 
Deborah Peacock 

President, 2011–2022, Corrales 

Jerry Armijo 
Secretary-Treasurer, 2003–2026, Socorro 

Dr. Yolanda Jones King 
2018–2024, Moriarty 

Dr. David Lepre Sr.
2021–2026, Placitas 

Veronica Espinoza
Student Regent, 2021–2022, Sunland Park 



175

C R E D I T S

Cover Artwork
Doug West, Arroyo Salado, serigraph, 1993

Doug West’s limited edition serigraphs and posters are available through Leslie Levy Fine Art www.leslielevy.com;  
his original paintings are represented by Blue Rain Gallery, Santa Fe, New Mexico blueraingallery.com.

Chapter Opening Photos 
Chapter I, page xii: Cerro Pedernal, south of Abiquiu Lake; photo by Matthew Zimmerer

Chapter 2, page 8:  Sandia Mountains; photo by Matthew Zimmerer

Chapter 3, page 22:  El Vado reservoir, Rio Arriba County; photo by Matthew Zimmerer

Chapter 4, page 36:  Bland Canyon, Jemez Mountains; photo by Craig D. Allen

Chapter 5, page 54:  Mesa Portales, Sandoval County; photo by Kevin Hobbs

Chapter 6, page 68:  Frijoles Canyon, Bandelier National Monument; photo by Anne C. Tillery

Chapter 7, page 80:  Middle Rio Grande irrigation system, Socorro; photo by Matthew Zimmerer

Chapter 8, page 90:  Socorro farmlands; photo by Matthew Zimmerer 

Chapter 9, page 106:  Socorro Bosque; photo by Matthew Zimmerer

Chapter 10, page 122:  Virga over La Jencia Basin, Socorro County; photo by Richard Chamberlin

Chapter 11, page 132:  Northwest of the Rio Grande Gorge Bridge; photo by Sara Chudnoff

 Creative Direction Barbara J Horowitz
 Design and Layout Lauri Logan
 Cartography and Graphics  Stephanie Chavez, Lauri Logan
 GIS and Cartographic Support Phil Miller, John Mumm
 Copyediting Belinda Harrison
 Bibliographic Support Amanda Doherty
 Publications Program Manager Barbara J Horowitz

This project could not have been successful without the participation of many people not previously acknowledged 
in this report. Among the many people who contributed, we would like to particularly thank:

 � All authors for their willingness to participate in this process, and for their time and collaborative 
spirit that they brought to the project;

 � New Mexico Bureau of Geology scientists Paul Bauer, Shari Kelley, and Stacy Timmons for their 
valued experience, expert eyes, and generosity of time—every step of the way;

 � The New Mexico Interstate Stream Commission team—Lucia Sanchez, Rolf Schmidt-Petersen, John 
Mumm, Amy Lewis, Emily Geery, Hannah Risley-White, and Andrew Erdmann—for recognizing the 
importance of climate change on New Mexico’s future water resources and engaging with the Bureau 
to develop this consensus study; 

 � The citizens of New Mexico who participated in the many outreach events and contributed public 
comments on this work;

 � And special thanks to Dr. Stephen G. Wells, president of New Mexico Tech, for supporting the 
Bureau’s leading role in developing the scientific foundation for the 50-Year Water Plan.

https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.leslielevy.com%2F&data=04%7C01%7C%7C04fdd40f83034c6f80cd08da076d5a44%7C84df9e7fe9f640afb435aaaaaaaaaaaa%7C1%7C0%7C637830463489669839%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=F8Alqsu5BVkHlm%2FTi04axqwQEjlwQnAKsGP%2BxQq3kRQ%3D&reserved=0
http://blueraingallery.com/


New Mexico Bureau of Geology and Mineral Resources
A Research Division of New Mexico Tech

geoinfo.nmt.edu
801 Leroy Place

Socorro, NM 87801-4750
(575) 835-5490

New Mexico Interstate Stream Commission
ose.state.nm.us

407 Galisteo Street, Suite #101  
Bataan Memorial Building 

P.O. Box 25102 
Santa Fe, NM 87504-5102 

(505) 827-6160

https://geoinfo.nmt.edu/
https://www.ose.state.nm.us

	Climate Change in New Mexico Over the Next 50 Years: Impacts on Water Resources
	I. Introduction
	II. Future Projections of Climate in New Mexico
	Introduction
	Previous Assessments of Twenty-first Century Climate Projections for New Mexico
	Downscaled CMIP5 Temperature Projections
	Downscaled CMIP5 Precipitation Projections
	Projections of Other Hydrologic Variables
	Key Gaps and Research Needs

	III. Effects of Climate Change on the Land-Surface Water Budget
	Introduction
	The Land-Surface Water Budget in a Semiarid Climate
	Effects of Climate Change on the Land-Surface Water Budget
	Information Available for Projecting Changes in Runoff and Recharge
	Summary of Future Water-Balance Changes
	Knowledge Gaps

	IV. Climate Change: Terrestrial Ecosystem Responses and Feedbacks to Water Resources in New Mexico
	Introduction
	Paleo-environmental and Historical Perspectives on Climate-Vegetation Relationships in New Mexico 
	Direct and Indirect Climate Effects on Vegetation and Ecohydrology
	Anticipated Effects of Ongoing and Future Climate Change on New Mexico’s Ecosystems
	Summary of Ecosystem Impacts and Responses
	Knowledge Gaps, Uncertainties, and Strategic Areas Where New Mexico Might Want to Invest in Further Research

	V. Impacts on Soils
	Introduction
	Impacts of Climate Change on Soil Landscapes in New Mexico
	Summary
	Knowledge Gaps

	VI. Landscape Change, Fire, and Erosion
	Introduction
	Cycles of Erosion and Deposition
	Ephemeral Channels (Arroyos)
	Post-wildfire Erosion
	Wildfire Frequency and Climate
	Precipitation Type and Erosion
	Summary
	Knowledge Gaps

	VII. Changes in Surface-Water and Groundwater Supplies and Impacts on Agricultural, Municipal, and Industrial Users
	Introduction
	Hydrology of Water-Supply Systems
	Water-Supply Sectors and Typology
	Groundwater-Dominant Agricultural Systems
	Groundwater-Dominant DCMI Systems
	Surface-Water-Dominant Agricultural Systems
	Surface-Water-Dominant DCMI Systems
	Conjunctive Surface-Water/Groundwater Agricultural Systems
	Conjunctive Surface-Water/Groundwater DCMI Systems
	Summary of Overarching Themes

	VIII. Effects of Climate Change on Extreme Precipitation Events and Stormwater Management in New Mexico
	Introduction
	Extreme Precipitation in New Mexico
	Local storms:
	General storms:
	Tropical storms:

	Criteria for Flood-Sensitive Infrastructure
	Regional Flooding
	Impacts of Precipitation on Burned Watersheds
	Summary of Existing Stormwater Management Programs in New Mexico
	Knowledge Gaps
	Conclusions

	IX. Impacts of a Warming Climate on Water Quality in New Mexico
	Introduction
	Summary of Surface-Water Quality in New Mexico
	Impacts of Climate Warming on Water Quality Parameters
	Summary and Research Gaps
	Knowledge Gaps

	X. Summary of Statewide and Regional Impacts of Climate Change on Water Resources
	Overall Summary of Impacts of Climate Change and Hydrological Impacts in New Mexico
	Systematics of Water-Balance Change with Increasing Aridity
	Regional Impacts of Climate Variability and Hydrological Impacts

	XI. Recommendations: Data Gaps and Challenges
	Precipitation
	Modeling
	Observational Data Gaps

	References Cited
	Appendix A
	Appendix B
	Appendix C
	Appendix References Cited




